References

  1. S.M. Ali, S.Z. Sabae, M. Fayez, M. Monib, N.A. Hegazi, The influence of agro-industrial effluents on River Nile pollution, J. Adv. Res., 2 (2011) 85–95.
  2. I.M. Ismail, A.S. Fawzy, N.M. Abdel-Monem, M.H. Mahmoud, M.A. El-Halwany, Combined coagulation flocculation pretreatment unit for municipal wastewater, J. Adv. Res., 3 (2012) 331–336.
  3. M.M. Rushdi, El-Kilani, M.H. Belal, Modelling an environmental pollutant transport from the stacks to and through the soil, J. Adv. Res., 1 (2010) 243–253.
  4. C. Helmes, C.I. Tucker, Disperse blue 79 environmental safety and human health effects of this commercially significant dye, Text. Chem. Color., 25 (1993) 15–17.
  5. M.M. Alnuaimi, M.A. Rauf, S.S. Ashraf, Comparative decoloration study of neutral red by different oxidative processes, Dyes Pigm., 72 (2007) 367–371.
  6. M. Kaneko, I. Okura, Application to environmental cleaning, Photocatalysis: Sci. Technol., 4 (2002) 109–184.
  7. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  8. E. Forgas, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewater: a Review, Environ. Int., 30 (2004) 953–971.
  9. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  10. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects, Jpn. J. Appl. Phys., 44 (2005) 8269–8285.
  11. S.K. Kansal, M. Singh, D. Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, J. Hazard. Mater., 141 (2007) 581–590.
  12. C.A.K. Gouvea, F. Wypych, S.G. Moraes, N. Duran, N. Nagata, P.P. Zamora, Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution, Chemosphere, 40 (2000) 433–440.
  13. B. Neppolian, H.C. Choi, S. Sakthivel, A. Banumathi, V. Murugesan, Solar/UV-induced photocatalytic degradation of three commercial textile dyes, J. Hazard. Mater., 89 (2002) 303–317.
  14. I.M. Szilagyi, B. Forizs, O. Rosseler, A. Szegedi, P. Nemeth, P. Kiraly, G. Tarkanyi, B. Vajna, K. Varga-Josepovits, K. Laszlo, A.L. Toth, P. Baranyai, M. Leskela, WO3 photocatalysts: influence of structure and composition, J. Catal., 294 (2012) 119–127.
  15. A. Rajat, V. Jitendra, P.B. Punjabi, S.C. Ameta, Use of semiconducting iron(III) oxide in photocatalytic bleaching of some dyes, Indian J. Chem. Technol., 13 (2006) 114–118.
  16. R.M. Alberici, W.F. Jardim, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl. Catal. B: Environ., 14 (1997) 55–68.
  17. G. Sivalingam, K. Nagaveni, M.S. Hegde, M. Giridhar, Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2, Appl. Catal. B: Environ., 45 (2003) 23–38.
  18. L. Junping, X. Yao, L. Yong, W. Dong, S. Yuhan, Synthesis of hydrophilic ZnS nanocrystals and their application in photocatalytic degradation of dye pollutants, China Particuol., 2 (2004) 266–269.
  19. S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedena, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature, J. Alloys Compd., 462 (2008) 335–339.
  20. P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, K. Koinuma, Y. Sagawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystalline thin films at room temperature, Solid State Commun., 103 (1997) 459–463.
  21. M.L. Curri, R. Comparelli, P.D. Cozzoli, G. Mascolo, A. Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye, Mater. Sci. Eng., 23 (2003) 285–289.
  22. M. Muruganandham, J. Wu, Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles, J. Appl. Catal. B: Environ., 80 (2008) 32–41.
  23. N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A: Chem., 162 (2004) 317–322.
  24. A. Noraidura, A. Rusmidah, A. Wan, B. Wan Abu, G.M. Nordin, O.M. Yusuf, TiO2 and ZnO on different supports for photodegradation of paraquat, Jurnal Teknologi., 47 (2007) 1–8.
  25. M. Afzaal, M.A. Malik, P. O’Brien, Preparation of zinc containing materials, New J. Chem., 31 (2007) 2029–2040.
  26. P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C, 111 (2007) 2834–2860.
  27. A. Mills, J.S. Wang, M. Crow, G. Taglioni, L. Novella, Novel low-temperature photocatalytic titania films produced by plasma-assisted reactive dc magnetron sputtering, Photochem. Photobiol. A, 187 (2006) 370–376.
  28. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater., 15 (2003) 464–466.
  29. F. Renault, N. Morin-Crini, F. Gimbert, P.M. Badot, G. Crini, Cationized starch-based material as a new ion-exchanger adsorbent for the removal of C.I. Acid Blue 25 from aqueous solutions, Bioresour. Technol., 99 (2008) 7573–7586.
  30. R. Saleh, N.F. Djaja, Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light, Spectrochim. Acta A: Mol. Biomol. Spectrosc., S1386– 1425 (2014) 581–590.
  31. F.S. Li, H.B. Wang, L. Wang, J.B. Wang, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater., 309 (2007) 295–299.
  32. N. Ponpandian, A. Narayanasamy, Influence of grain size and structural changes on the electrical properties of nanocrystalline zinc ferrite, J. Appl. Phys., 92 (2002) 2770–2778.
  33. M.P. Pileni, Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater., 11 (2001) 323–336.
  34. X.Y. Li, Y. Hou, Q.D. Zhao, L.Z. Wang, A general, one step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation, J. Colloid Interface Sci., 358 (2011) 102–108.
  35. S.W. Cao, Y.J. Zhu, G.F. Cheng, Y.H. Huang, Preparation and photocatalytic property 628 of α-Fe2O3 hollow core/shell hierarchical nanostructures, J. Phys. Chem. Solids, 71 (2010) 1680–1683.
  36. Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation, Ind. Eng. Chem. Res., 50 (2011) 7210–7218.
  37. X.Y. Li, Y. Hou, Q.D. Zhao, W. Teng, X.J. Hu, G.H. Chen, Capability of novel ZnFe2O4 nanotube arrays for simulatedsunlight induced degradation of 4-chlorophenol, Chemosphere, 82 (2011) 581–586.
  38. G.L. Fan, Z.J. Gu, L. Yang, F. Li, Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique, Chem. Eng. J., 155 (2009) 534–541.
  39. R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzi, G. Mascolo, A. Agostiano, UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates, Appl. Catal., B60 (2005) 1–11.
  40. L.W. Zhang, H.Y. Cheng, R.L. Zong, Y.F. Zhu, Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity, J. Phys. Chem. C, 113 (2009) 2368–2374.
  41. H.B. Fu, T.G. Xu, Y.F. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60, Environ. Sci. Technol., 42 (2008) 8064–8069.
  42. Z.C. Wang, Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology, ACS Nano, 2 (2008) 1987–1992.
  43. L. Xu, Y. Au, C. Pelligra, C. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joeshon, S.L. Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater., 21 (2009) 2875–2885.
  44. J. Tian, Z. Wu, Z. Liu, C. Yu, K. Yang, L. Zhu, W. Huang, Y. Zhou, Low‐cost and efficient visible‐light‐driven CaMg(CO3)2@Ag2CO3 microspheres fabricated via an ion exchange route, Chinese J. Catal., 38 (2017) 1899–1908.
  45. J. Tian, R. Liu, Z. Liu, C. Yu, M. Liu, Boosting the photocatalytic performance of Ag2CO3 crystals in phenol degradation via coupling with trace N‐CQDs, Chinese J. Catal., 38 (2017) 1999–2008.
  46. H. He, S. Xue, Z. Wu, C. Yu, K. Yang, G. Peng, W. Zhou, D. Li, Sonochemical fabrication, characterization and enhanced photocatalytic performance of Ag2S/Ag2WO4 composite microrods, Chinese J. Catal., 37 (2016) 1841–1850.
  47. D. Zeng, K. Yang, C. Yu, F. Chen, X. Li, Z. Wu, H. Liu, Phase transformation and microwave hydrothermal guided a novel double Z-scheme ternary vanadate heterojunction with highly efficient photocatalytic performance, Appl. Catal. B: Environ., 237 (2018) 449–463.
  48. S. Song, Y. Xiaoyan, Z. Yi, Z. Fan, D. Jianjun, B. Jun, G. Chen, Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method, Prog. Nat. Sci.: Mater. Int., 22 (2012) 639–643.
  49. J. Theerthagiri, R.A. Senthil, P. Arunachalam, M.H. Buraidah, J. Madhavan, S. Amutha, A.K. Arof, Synthesis of various carbon incorporated flower-like MoS2 microspheres as counter electrode for dye-sensitized solar cells, J. Solid State Electrochem., 21 (2017) 581–590.
  50. F. Ansari, M.S. Niasari, Simple sol-gel auto-combustion synthesis and characterization of lead hexaferrite by utilizing cherry juice as a novel fuel and green capping agent, Adv. Powder Technol., 27 (2016) 2025–2031.
  51. F. Ansari, A. Sobhani, M.S. Niasari, Green synthesis of magnetic chitosan nanocomposites by a new sol–gel auto-combustion method, J. Magn. Magn. Mater., 410 (2016) 27–33.
  52. F. Ansari, A. Sobhani, M.S. Niasari, PbTiO3/PbFe12O19 nanocomposites: green synthesis through an eco-friendly approach, Composites Part B, 85 (2016) 170–175.
  53. M. Mahdiani, A. Sobhani, F. Ansari, M.S. Niasari, Lead hexaferrite nanostructures: green amino acid sol–gel autocombustion synthesis, characterization and considering magnetic property, J. Mater. Sci.: Mater. Electron., 28 (2017) 17627–17634.
  54. F. Ansari, A. Sobhani, M.S. Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents, J. Colloid Interface Sci., 514 (2018) 723–732.
  55. M. Mahdiani, F. Soofivand, F. Ansari, M.S. Niasari, Grafting of CuFe12O19 nanoparticles on CNT and graphene: eco-friendly synthesis, characterization and photocatalytic activity, J. Clean. Prod., 176 (2018) 1185–1197.
  56. M.S. Niasari, F. Soofivand, A.S. Nasa, M.S. Arani, A.Y. Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application, Adv. Powder Technol., 27 (2016) 2066–2075.
  57. D. Abbasi, M.S. Ghanbari, M. Niasari, M. Hamadanian, Photodegradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites, J. Mater. Sci.: Mater. Electron., 27 (2016) 4800–4809.
  58. J. Theerthagiri, R.A. Senthil, A. Priya, J. Madhavan, M. Ashokkumar, Synthesis of visible-light active V2O5/g-C3N4 composite photocatalyst, New J. Chem., 39 (2015) 1367–1374.
  59. J. Ok-Sang, H. Tae Eun, J. Euh Duck, W. Mi Sook, K. Hyunmin, Synthesis of zinc ferrite and its photocatalytic application under visible light, J. Korean Phys. Soc., 54 (2009) 204–208.
  60. R. Bangxing, H. Ying, H. Changseok, N. Mallikarjuna, D. Dionysios, Ferrites as photocatalysts for water splitting and degradation of contaminants, ferrites and ferrates: chemistry and applications in sustainable energy and environmental remediation, Chapter 3, ACS Symp. Ser., 1238 (2016) 79–112.
  61. G. Xin, L. Xiangxuan, Z. Zuoming, W. Xuanjun, X. Zheng, Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays, Sci. Rep., 6 (2016) 1–11.
  62. F. Peng, Q. Jun, H. Jin-xian, L. Jian-hong, Z. Ming, S. Bi-tao, Barium (II)-doped zinc ferrite-reduced graphene oxide nanohybrids for superior adsorption and magnetic properties, New Carbon Mater., 32 (2017) 402–410.