References

  1. I. Sires, E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review, Environ. Int., 40 (2012) 212−229.
  2. B.I. Escher, R. Baumgartner, M. Koller, K. Treyer, J. Lienert, C.S. McArdell, Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater, Water Res., 45 (2011) 75−92.
  3. C. Gadipelly, A.P. Gonzalez, G.D. Yadav, I. Ortiz, R. Ibanez, V.K. Rathod, K.V. Marathe, Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse, Ind. Eng. Chem. Res., 53 (2014) 11571−11592.
  4. P. Palo, J.R. Dominguez, T. Gonzalez, J.S. Martin, E.M. Cuerda-Correa, Feasibility of electrochemical degradation of pharmaceutical pollutants in different aqueous matrices: optimization through design of experiments, J. Environ. Sci. Health A, 49 (2014) 843–850.
  5. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. a review, Crit. Rev. Environ. Sci. Technol., 44 (2014) 2577–2641.
  6. P. Verlicchi, M. Al Aukidy, A. Galletti, M. Petrovic, D. Barcelo, Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment, Sci. Total Environ., 430 (2012) 109–118.
  7. M. Fernandez, A. Laca, M. Diaz, Seasonal occurrence and removal of pharmaceutical products in municipal wastewaters, J. Environ. Chem. Eng., 2 (2014) 495–502.
  8. J. Wang, T. Li, M. Zhou, X. Li, J. Yu, Characterization of hydrodynamics and mass transfer in two types of tubular electrochemical reactors, Electrochim. Acta, 173 (2015) 698–704.
  9. S.A. Martínez-Delgadillo, P.H.R. Mollinedo, M.A. Gutierrezc, I.D. Barceloa, J.M. Mendezd, Performance of a tubular electrochemical reactor operated with different inlets to remove Cr(VI) from wastewater, Comput. Chem. Eng., 34 (2010) 491–499.
  10. C. Comninellis, G.P. Vercesi, Characterization of DSA type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 21 (1991) 335–345.
  11. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  12. K. Rajeshwar, J.G. Ibanez, Environmental Electrochemistry; Fundamentals and Applications in Pollution Abatement, Academic Press, Inc., CA, 1997.
  13. K. Rajeshwar, J.G. Ibanez, G.M. Swain, Reviews of electrochemistry: electrochemistry and the environment, J. Appl. Electrochem., 24 (1994) 1077–1091.
  14. R. Priambodo, S. Yu-Jen, H. Yu-Jen, H. Yao-Hui, Treatment of real wastewater using semi batch (photo)-electro-Fenton method, Sustain. Environ. Res., 21 (2011) 389–393.
  15. A.R. Rahmani, K. Godini, D. Nematollahi, G. Azarian, Electrochemical oxidation of activated sludge by using direct and indirect anodic oxidation, Desal. Wat. Treat., 56 (2014) 1–12.
  16. J.R. Dominguez, T. Gonzalez, P. Palo, Electrochemical degradation of a real pharmaceutical effluent, Water Air Soil Pollut., 223 (2012) 2685−2694.
  17. B. Ramesh Babu, P. Venkatesan, R. Kanimozhi, C. Ahmed Basha, Removal of pharmaceuticals from wastewater by electrochemical oxidation using cylindrical flow reactor and optimization of treatment conditions, J. Environ. Sci. Health A, 44 (2009) 985–994.
  18. B.M.B. Ensano, L. Borea, V. Naddeo, V. Belgiorno, M.D.G. De Luna, F.C. Ballesteros Jr., Removal of pharmaceuticals from wastewater by intermittent electrocoagulation, Water, 9 (2017) 85.
  19. J.F. Perez, J. Llanos, C. Saez, C. Lopez, P. Canizares, M.A. Rodrigo, Treatment of real effluents from the pharmaceutical industry: a comparison between Fenton oxidation and conductivediamond electro-oxidation, J. Environ. Manag., 195 (2017) 216–223.
  20. P. Maloszewski, P. Wachniew, P. Czuprynski, Hydraulic characteristics of a wastewater treatment pond evaluated through tracer test and multi-flow mathematical approach, Pol. J. Environ. Stud., 15 (2006) 105–110.
  21. Y. Wang, U.C. Sanly, M. Brannock, G. Leslie, Diagnosis of membrane bioreactor performance through residence time distribution measurements – a preliminary study, Desalination, 236 (2009) 120–126.
  22. E.B. Nauman, Chemical Reactor Design, Optimisation, and Scaleup, McGraw-Hill Publishers, New York, 2002.
  23. J. Su, H. Lu, H. Xu, J. Sun, J. Han, H. Lin, Mass transfer enhancement for mesh electrode in a tubular electrochemical reactor using experimental and numerical simulation method, Russ. J. Electrochem., 47 (2011) 1293–1298.
  24. W. Djoudi, F. Aissani-Benissad, P. Ozil, Flow modeling in electrochemical tubular reactor containing volumetric electrode: application to copper cementation reaction, Chem. Eng. Res. Des., 90 (2012) 1582–1589.
  25. S.I. Dhorgham, C. Veerabahu, R. Palani, Seethala Devi, N. Balasubramanian, Flow dynamics and mass transfer studies in a tubular electrochemical reactor with a mesh electrode, Comput. Fluids, 73 (2013) 97–103.
  26. APHA-AWWA-WPCF, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington DC Publishers, 1998.
  27. H.S. Fogler, Elements of Chemical Reaction Engineering, 4th ed., Pearson Education Inc., USA, 2006.
  28. O. Levenspiel, Chemical Reaction Engineering, 3rd ed., John Wiley & Sons Pte. Ltd., Singapore, 2004.
  29. C. Xiao-Chang, Z. Ting-An, Z. Qiu-Yue, Computational simulation of fluid dynamics in a tubular stirred reactor, Trans. Nonferrous Met. Soc. China, 19 (2009) 489–495.
  30. K. Thirugnanasambandham, V. Sivakumar, Removal of ecotoxicological matters from tannery wastewater using electro coagulation reactor: modelling and optimization, Desal. Wat. Treat., 57 (2016) 3871–3880.