References

  1. X.J. Ma, H.L. Xia, Treatment of water-based printing ink wastewater by Fenton process combined with coagulation, J. Hazard. Mater., 162 (2009) 386–390.
  2. B. Calli, B. Mertoglu, K. Roest, B. Inance, Comparison of long-term performances and final microbial compositions of anaerobic reactors treating landfill leachate, Biores. Technol., 97 (2006) 641–647.
  3. A. Meteš, N. Koprivanac, A. Glasnović, Flocculation as a treatment method for printing ink wastewater, Water Environ. Res., 72 (2007) 680–688.
  4. E. Diamadopoulos, H. Barndõk, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of ink effluents from flexographic printing by lime precipitation and boron-doped diamond (BDD) electrochemical oxidation, Water Sci.Technol., 60 (2009) 2477–2483.
  5. E.N. Leshem, D.S. Pines, S.J. Ergas, D.A. Reckhow, Electrochemical oxidation and ozonation for textile wastewater reuse, J. Environ. Eng., 132 (2006) 324–330.
  6. A. Meteš, D. Kovačević, D. Vujević, S. Papić, The role of zeolites in wastewater treatment of printing inks, Water Res., 38 (2004) 3373–3381.
  7. S. Noopui, P. Thiravetyan, W. Nakbanpote, S. Netpradit, Color removal from water-based ink wastewater by bagasse fly ash, sawdust fly ash and activated carbon, Chem. Eng. J., 162 (2010) 503–508.
  8. B. Yang, H. Xu, S. Yang, S. Bi, F. Li, C. Shen, C. Ma, Q. Tian, J. Liu, X. Song, W. Sang, Y. Liu, Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor, Biores. Technol., 264 (2018) 154–162.
  9. Y. Zhang, H. Shi, Y. Qian, Biological treatment of printing ink wastewater, Water Sci. Technol., 47 (2002) 271–276.
  10. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington (DC), 1998.
  11. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  12. J.A. Camargo, Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment, Environ. Int., 32 (2006) 831–849.
  13. N. Kishida, J.H. Kim, M. Chen, H. Sasaki, R. Sudo, Effectiveness of oxidation–reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors, J. Biosci. Bioeng., 96 (2003) 285–290.
  14. C.H. Chang, O.J. Hao, Sequencing batch reactor system for nutrient removals: ORP and pH profiles, J. Chem. Technol. Biotechnol., 67 (1996) 27–38.
  15. A. Shimada, H. Nakata, I. Nakamura, Acidic exopolysaccharide produced by Enterobacter sp., J. Ferment. Bioeng., 84 (1997) 113–118.
  16. M.E. Guynot, A. Toribio, M. Quevedo, L. Muxí, Microflora of dissimilative nitrate reduction in a denitrifying reactor, Appl. Environ. Microbiol., 50 (1998) 396–400.
  17. A.C. Curtis, L.I. John, Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans, Appl. Environ. Microbiol., 45 (1983) 1247–1253.
  18. M.C. Silvestrini, C.L. Galeotti, M. Gervais, E. Schininà, Nitrite reductase from Pseudomonas aeruginosa: sequence of the gene and the protein, FEBS Lett., 254 (1989) 33–38.
  19. Y. Gilbert, Y.L. Bihan, G. Aubry, M. Veillette, C. Duchaine, P. Lessard, Microbiological and molecular characterization of denitrification in biofilters treating pig manure, Biores. Technol., 99 (2008) 4495–4502.
  20. H.C. Pinkart, D.C. White, Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains, J. Bacteriol., 179 (1997) 4219–4226.
  21. Y. Xu, T. He, Z. Li, Q. Ye, Y. Chen, E. Xie, X. Zhang, Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature, BioMed Res. Int., 10 (2017) 1–7.
  22. A.A. Khardenavis, A. Kapley, H.J. Purohit, Simultaneous nitrification and denitrification by diverse Diaphorobacter sp., Appl. Environ. Microbiol. 77 (2007) 403–409.
  23. H. Li, J. Peng, K.A. Weber, Y. Zhu, Phylogenetic diversity of Fe(III)-reducing microorganism in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors, J. Soils Sediments, 11 (2011) 1234–1242.
  24. D.E. Canfield, B. Thamdrup, J.W. Hansen, The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction, Geochim. Cosmochim. Acta, 57 (1993) 3867–3883.
  25. D.R. Lovley, R.T. Anderson, Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface, Hydrogeol. J., 8 (2000) 77–88.
  26. K.T. Finneran, H.F. Forbush, C.V. Gaw Van Praagh, D.R. Lovley, Desulfitobacterium Metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds, Int. J. Syst. Evol. Microbiol., 52 (2002) 1929–1935.
  27. Y. Okon, J. Vanderleyden, Root-associated Azospirillum species can stimulate plants, ASM News, 63 (1997) 366–370.
  28. J.J. Rich, D.D. Myrold, Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in Oregon, USA, Soil Biol. Biochem., 36 (2004) 1431–1441.