References
- X.J. Ma, H.L. Xia, Treatment of water-based printing ink
wastewater by Fenton process combined with coagulation,
J. Hazard. Mater., 162 (2009) 386–390.
- B. Calli, B. Mertoglu, K. Roest, B. Inance, Comparison of
long-term performances and final microbial compositions of
anaerobic reactors treating landfill leachate, Biores. Technol.,
97 (2006) 641–647.
- A. Meteš, N. Koprivanac, A. Glasnović, Flocculation as a
treatment method for printing ink wastewater, Water Environ.
Res., 72 (2007) 680–688.
- E. Diamadopoulos, H. Barndõk, N.P. Xekoukoulotakis, D.
Mantzavinos, Treatment of ink effluents from flexographic
printing by lime precipitation and boron-doped diamond
(BDD) electrochemical oxidation, Water Sci.Technol., 60 (2009)
2477–2483.
- E.N. Leshem, D.S. Pines, S.J. Ergas, D.A. Reckhow, Electrochemical
oxidation and ozonation for textile wastewater reuse,
J. Environ. Eng., 132 (2006) 324–330.
- A. Meteš, D. Kovačević, D. Vujević, S. Papić, The role of zeolites
in wastewater treatment of printing inks, Water Res., 38 (2004)
3373–3381.
- S. Noopui, P. Thiravetyan, W. Nakbanpote, S. Netpradit, Color
removal from water-based ink wastewater by bagasse fly ash,
sawdust fly ash and activated carbon, Chem. Eng. J., 162 (2010)
503–508.
- B. Yang, H. Xu, S. Yang, S. Bi, F. Li, C. Shen, C. Ma, Q. Tian,
J. Liu, X. Song, W. Sang, Y. Liu, Treatment of industrial dyeing
wastewater with a pilot-scale strengthened circulation anaerobic
reactor, Biores. Technol., 264 (2018) 154–162.
- Y. Zhang, H. Shi, Y. Qian, Biological treatment of printing ink
wastewater, Water Sci. Technol., 47 (2002) 271–276.
- APHA, AWWA, WEF, Standard Methods for the Examination
of Water and Wastewater, 20th ed., American Public Health
Association, Washington (DC), 1998.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: a review, Adv. Colloid
Interface Sci., 209 (2014) 172–184.
- J.A. Camargo, Á. Alonso, Ecological and toxicological effects
of inorganic nitrogen pollution in aquatic ecosystems: a global
assessment, Environ. Int., 32 (2006) 831–849.
- N. Kishida, J.H. Kim, M. Chen, H. Sasaki, R. Sudo, Effectiveness
of oxidation–reduction potential and pH as monitoring and
control parameters for nitrogen removal in swine wastewater
treatment by sequencing batch reactors, J. Biosci. Bioeng., 96
(2003) 285–290.
- C.H. Chang, O.J. Hao, Sequencing batch reactor system for
nutrient removals: ORP and pH profiles, J. Chem. Technol.
Biotechnol., 67 (1996) 27–38.
- A. Shimada, H. Nakata, I. Nakamura, Acidic exopolysaccharide
produced by Enterobacter sp., J. Ferment. Bioeng., 84 (1997) 113–118.
- M.E. Guynot, A. Toribio, M. Quevedo, L. Muxí, Microflora of
dissimilative nitrate reduction in a denitrifying reactor, Appl.
Environ. Microbiol., 50 (1998) 396–400.
- A.C. Curtis, L.I. John, Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans, Appl. Environ. Microbiol., 45 (1983) 1247–1253.
- M.C. Silvestrini, C.L. Galeotti, M. Gervais, E. Schininà, Nitrite
reductase from Pseudomonas aeruginosa: sequence of the gene
and the protein, FEBS Lett., 254 (1989) 33–38.
- Y. Gilbert, Y.L. Bihan, G. Aubry, M. Veillette, C. Duchaine,
P. Lessard, Microbiological and molecular characterization
of denitrification in biofilters treating pig manure, Biores.
Technol., 99 (2008) 4495–4502.
- H.C. Pinkart, D.C. White, Phospholipid biosynthesis and
solvent tolerance in Pseudomonas putida strains, J. Bacteriol., 179
(1997) 4219–4226.
- Y. Xu, T. He, Z. Li, Q. Ye, Y. Chen, E. Xie, X. Zhang, Nitrogen
removal characteristics of Pseudomonas putida Y-9 capable
of heterotrophic nitrification and aerobic denitrification at
low temperature, BioMed Res. Int., 10 (2017) 1–7.
- A.A. Khardenavis, A. Kapley, H.J. Purohit, Simultaneous
nitrification and denitrification by diverse Diaphorobacter sp.,
Appl. Environ. Microbiol. 77 (2007) 403–409.
- H. Li, J. Peng, K.A. Weber, Y. Zhu, Phylogenetic diversity of
Fe(III)-reducing microorganism in rice paddy soil: enrichment
cultures with different short-chain fatty acids as electron
donors, J. Soils Sediments, 11 (2011) 1234–1242.
- D.E. Canfield, B. Thamdrup, J.W. Hansen, The anaerobic
degradation of organic matter in Danish coastal sediments:
iron reduction, manganese reduction, and sulfate reduction,
Geochim. Cosmochim. Acta, 57 (1993) 3867–3883.
- D.R. Lovley, R.T. Anderson, Influence of dissimilatory metal
reduction on fate of organic and metal contaminants in the
subsurface, Hydrogeol. J., 8 (2000) 77–88.
- K.T. Finneran, H.F. Forbush, C.V. Gaw Van Praagh, D.R. Lovley,
Desulfitobacterium Metallireducens sp. nov., an anaerobic
bacterium that couples growth to the reduction of metals and
humic acids as well as chlorinated compounds, Int. J. Syst. Evol.
Microbiol., 52 (2002) 1929–1935.
- Y. Okon, J. Vanderleyden, Root-associated Azospirillum species
can stimulate plants, ASM News, 63 (1997) 366–370.
- J.J. Rich, D.D. Myrold, Community composition and activities
of denitrifying bacteria from adjacent agricultural soil, riparian
soil, and creek sediment in Oregon, USA, Soil Biol. Biochem.,
36 (2004) 1431–1441.