References

  1. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling – an overview, RSC Adv., 2 (2012) 6380–6388.
  2. K. Ait Bentaleb, E. El Khattabi, M. Lakraimi, L. Benaziz, E. Sabbar, M. Berraho, A. Legrouri, Removal of Cr(VI) from wastewater by anionic clays, J. Mater. Environ. Sci., 7 (2016) 2886–2896.
  3. J. Lach, E. Ociepa, Effect of the process of Wg-12 activated carbon modification on the sorption of chromium, Ecol. Chem. Eng. A, 20 (2013) 731–739.
  4. J. Acharya, J.N. Sahu, B.K. Sahoo, C.R. Mohanty, B.C. Meikap, Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride, Chem. Eng. J., 150 (2009) 25–39.
  5. D. Mohan, K.P. Singh, V.K. Singh, Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth, Ind. Eng. Chem. Res., 44 (2005) 1027–1042.
  6. A. Türkan, Y. Kar, Removal of Cr(VI) from aqueous solution by pyrolytic charcoals, New Carbon Mater., 31 (2016) 501–509.
  7. G. Tiravanti, D. Petruzzelli, R. Passino, Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery, Water Sci. Technol., 36 (1997) 197–207.
  8. C. Balan, I. Volf, D. Bilba, Chromium (VI) removal from aqueous solutions by purolite base anion-exchange resins with gel structure, Chem. Ind. Chem. Eng. Q, 19 (2013) 615–628.
  9. C.A. Kozlowski, W. Walkowiak, Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes, Water Res., 36 (2002) 4870–4876.
  10. T.Zh. Sadyrbaeva, Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane-electrodialysis process, Chem. Eng. Process., 99 (2016) 183–191.
  11. N. Kongsricharoern, C. Polprasert, Chromium removal by a bipolar electrochemical precipitation process, Water Sci. Technol., 34 (1996) 109–116.
  12. A.R. Rahmani, E. Hossieni, A. Poormohammadi, Removal of chromium (VI) from aqueous solution using electro-Fenton process, Environ. Process., 2 (2015) 419–428.
  13. Z. Li, R. Bowman, Retention of inorganic oxyanions by organokaolinite, Water Res., 35 (2001) 3771–3776.
  14. M. Majdan, S. Pikus, Z. Rzączyńska, M. Iwan, O. Maryuk, R. Kwiatkowski, H. Skrzypek, Characteristics of chabazite modified by hexadecyltrimethylammonium bromide and of its affinity toward chromates, J. Mol. Struct., 791 (2006) 53–60.
  15. M. Majdan, O. Maryuk, S. Pikus, E. Olszewska, R. Kwiatkowski, H. Skrzypek, Equilibrium, FTIR, scanning electron microscopy and small wide angle X-ray scattering studies of chromates adsorption on modified bentonite, J. Mol. Struct., 740 (2005) 203–211.
  16. Z. Li, R.S. Bowman, Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite, Environ. Sci. Technol., 31 (1997) 2407–2412.
  17. B.S. Krishna, D.S.R. Murty, B.S. Jai Prakash, Surfactant-modified clay as adsorbent for chromate, Appl. Clay Sci., 20 (2001) 65–71.
  18. R. Eisler, Chromium hazards to fish, wildlife, and invertebrates: a synoptic review, U.S. Fish Wildl. Serv. Biol. Rep., 85 (1986) 1–38.
  19. C.B. Vidal, G.S. Raulino, A.L. Barros, A.C. Lima, J.P. Ribeiro, M.J. Pires, R.F. Nascimento, Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organozeolites and as-synthesized MCM-41M, Sep. Purif. Technol., 40 (2004) 217–229.
  20. J.E. Gieseking, The mechanism of cation exchange in the montmorillonitebeidellite-nontronite type of clay minerals, Soil Sci., 47 (1939) 1–14.
  21. S.M. Lee, D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: an overview, Appl. Clay Sci., 59–60 (2012) 84–102.
  22. L.B. de Paiva, A.R. Moralesa, F.R. Valenzuela Diaz, Organoclays: properties, preparation and applications, Appl. Clay Sci., 42 (2008) 8–24.
  23. G.M. Haggerty, R.S. Bowman, Sorption of chromate and other inorganic anions by organo-zeolite, Environ. Sci. Technol., 28 (1994) 452–458.
  24. H. Guan, E. Bestland, C. Zhu, H. Zhu, D. Albertsdottir, J. Hutson, C.T. Simmons, M. Ginic-Markovic, X. Tao, A.V. Ellis, Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites, J. Hazard. Mater., 183 (2010) 616–621.
  25. J. Schick, P. Caullet, J.L. Paillaud, J. Patarin, C. Mangold- Callarec, Batchwise nitrate removal from water on a surfactantmodified zeolite, Microporous Mesoporous Mater., 132 (2010) 395–400.
  26. Z. Li, L. Gallus, Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR, Colloids Surf. A: Physicochem. Eng. Aspects, 264 (2005) 61–67.
  27. ASTM (American Society for Testing And Materials), Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington, 1992.
  28. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemianowska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  29. S. Brunauer, P.H. Emett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  30. R.L. Frost, J. Yang, H. Cheng, A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite: a midinfrared and near infrared study, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 77 (2010) 856–861.
  31. Z. Li, W.T. Jiang, H. Hong, An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 71 (2008) 1525–1534.
  32. J. Madejova, H. Palkova, P. Kamadel, IR Spectroscopy of Clay Minerals and Clay Nanocomposites, J. Yarwood, R. Douthwaite, S. Duckett, Eds., Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications, Royal Society of Chemistry, Cambridge, UK, Vol. 41, 2010, pp. 22–71.
  33. Y. Xi, Z. Ding, H. He, R.L. Frost, Infrared spectroscopy of organoclays synthesized with the surfactant octadecyltrimethylammonium bromide, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 61 (2005) 515–525.
  34. M. Majdan, O. Maryuk, A. Gładysz-Płaska, S. Pikusa, R. Kwiatkowski, Spectral characteristics of the bentonite loaded with benzyldimethyloctadecylammonium chloride, hexadecyltrimethylammonium bromide and dimethyldioctadecylammonium bromide, J. Mol. Struct., 874 (2008) 101–107.
  35. H.P. He, R.L. Frost, T. Bostrom, P. Yuan, L. Duong, D. Yang, X.F. Xi, T.J. Kloprogge, Changes in the morphology of organoclays with HDTMA+ surfactant loading, Appl. Clay Sci., 31 (2006) 262–271.
  36. E.J. Sullivan, D.B. Hunter, R.S. Bowman, Topological and thermal properties of surfactant-modified clinoptilolite studied by Tapping-mode atomic force microscopy and high-resolution thermogravimetric analysis, Clays Clay Miner., 45 (1997) 42–53.
  37. E.J. Sullivan, D.B. Hunter, R.S. Bowman, Fourier transform Raman spectroscopy of sorbed HDTMA and the mechanism of chromate sorption to surfactant-modified clinoptilolite, Environ. Sci. Technol., 32 (1998) 1948–1995.
  38. D. Palmer, R.W. Puls, Natural Attenuation of Hexavalent Chromium in Groundwater and Soils, EPA/540/5-94/505. U.S. EPA, Office of Solid Waste and Emergency Response and Office of Research and Development, Ada, Oklahoma, 1994.
  39. D.L. Sparks, Kinetics of Reaction in Pure and Mixed Systems, Soil Physical Chemistry, CRC Press, Boca Raton, Florida, 1986.
  40. R.S. Juang, M.L. Chen, Application of the Elovich equation to the kinetics of metal sorption with solvent-impregnated resins, Ind. Eng. Chem. Res., 36 (1997) 813–820.
  41. S. Lagergren, About the theory of so called adsorption of soluble substances, K. Sven. Vetensk. Akad. Handl., 24 (1898) 1–39.
  42. G. Blachard, M. Maunayer, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501–1507.
  43. Y.S. Ho, D.A.J. Wase, C.F. Forster, Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat, Environ. Technol., 17 (1996) 71–77.
  44. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  45. W.J. Weber, J.C. Morris, Kinetics of adsorption of carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
  46. T.S. Anirudhan, P.G. Radhakrishnan, Thermodynamics and kinetics of adsorption of Cu(II) from aqueous solutions onto a new cation exchanger derived from tamarind fruit shell, J. Chem. Thermodyn., 40 (2008) 702–709.
  47. G.E. Boyd, A.W. Adamson, L.S. Meyers, The exchange adsorption of ions from aqueous solution by organic zeolites. II, Kinetics, J. Am. Chem. Soc., 69 (1947) 2836–2848.
  48. D. Reichenberg, Properties of ion exchange resins in relation to their structure. III. Kinetics of exchange, J. Am. Chem. Soc., 75 (1953) 589–597.
  49. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Phys. Chim. USSR, 12 (1940) 327–356.
  50. M.M. Dubinin, L.V. Radushkevich, The equation of the characteristic curve of activated charcoal, Proc. Acad. Sci. USSR, 55 (1947) 331–337.
  51. M.M. Dubinin, The potential theory of adsorption of gasses and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60 (1960) 235–266.
  52. H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57 (1906) 385–470.
  53. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  54. S.M. Hasany, M.H. Chaudhary, Sorption potential of Hare River sand for the removal of antimony from acidic aqueous solution, Appl. Radiat. Isot., 47 (1996) 467–471.
  55. Q. Li, L. Chai, Z. Yang, Q. Wang, Kinetics and thermodynamics of Pb(II) adsorption onto modified spent grain from aqueous solutions, Appl. Surf. Sci., 255 (2009) 4298–4303.
  56. C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm, I. Theoretical, J. Colloid Interface Sci., 47 (1974) 755–765.