References
- V.G. Gude, Energy consumption and recovery in reverse
osmosis, Desal. Wat. Treat., 36 (2011) 239–260.
- J.M. Amezaga, A. Amtmann, C.A. Biggs, T. Bond, C.J. Gandy, A.
Honsbein, E. Karunakaran, L. Lawton, M.A. Madsen, K. Minas,
M.R. Templeton, Biodesalination: a case study for applications
of photosynthetic bacteria in water treatment, Plant Physiol.,
164 (2014) 1661–1676.
- S.K. Apte, J. Thomas, Sodium transport in filamentous nitrogen
fixing cyanobacteria, J. Biosci., 5 (1983) 225–233.
- S.K. Apte, B.R. Reddy, J. Thomas, Relationship between sodium
influx and salt tolerance of nitrogen-fixing cyanobacteria, Appl.
Environ. Microbiol., 53 (1987) 1934–1939.
- K. Kim, E. Seo, S. Chang, T.J. Park, S.J. Lee, Novel water filtration
of saline water in the outermost layer of mangrove roots, Sci.
Rep., 6 (2016) 20426.
- R. Taheri, M. Shariati, Study of the inhibitory effect of the media
culture parameters and cell population to increase the biomass
production of Dunaliella tertiolecta, Prog. Biol. Sci., 3 (2013)
123–133.
- E.R. Venteris, R.L. Skaggs, A.M. Coleman, M.S. Wigmosta, A
GIS cost model to assess the availability of freshwater, seawater,
and saline groundwater for algal biofuel production in the
united states, Environ. Sci. Technol., 47 (2013) 4840–4849.
- X. Gan, G. Shen, B. Xin, M. Li, Simultaneous biological
desalination and lipid production by Scenedesmus obliquus,
cultured with brackish water, Desalination, 400(2016) 1–6.
- H. Gimmler, C. Wiedemann, E. Moller, The metabolic response
of the halotolerant green alga Dunalella parva to hypertonic
shocks, Plant Biol., 94 (1981) 613–634.
- K. Minasa, E. Karunakaran, T. Bond, C. Gandy, A. Honsbein,
M. Madsen, J. Amezaga, A. Amtmann, M.R. Templeton, C.A.
Biggs, L. Lawton, Biodesalination: an emerging technology for
targeted removal of Na+ and Cl− from seawater by cyanobacteria,
Desal. Wat. Treat., 55 (2015) 2647–2668.
- J.D. Noue, N. Pauw, The potential of microalgal biotechnology.
A review of production and uses of microalgae, Biotechnol.
Adv., 6 (1988) 725–770.
- E. Eroglu, S.M. Smith, C.L. Raston, Application of Various
Immobilization Techniques for Algal Bioprocesses, N.R.
Moheimani, M.P. McHenry, K. Boer, P.A. Bahri, Eds., Biomass
and Biofuels from Microalgae: Advances in Engineering and
Biology, Springer International Publishing, Switzerland, 2015,
pp. 19–44.
- N. Mallick, Biotechnological potential of immobilized algae for
wastewater N, P and metal removal: a review. Biometals, 15
(2002) 377–390.
- W.J. Oswald, Micro-algae and Wastewater Treatment, M.A.
Borowitzka, L.J. Borowitzka, Eds., Micro-algal Biotechnology,
Cambridge University Press, New York, 1988, pp. 357–394.
- L.E. Gonzalez, V.K. Lebsky, J.P. Hern andez, J.J Bustillor, Y.
Bashan, Changes in the metabolism of the microalgae Chlorella
vulgaris when coimmobilized in alginate with the nitrogen fixing
Phyllobacterium myrsinacearum, Can. J. Microbiol., 46
(1994) 653–659.
- N.F.Y. Tam, P.S. Lau, Y.S. Wong, Wastewater inorganic N and P
removal by immobilized Chlorella vulgaris, Water Sci. Technol.,
30 (1994) 369–374.
- P. Chevalier, J. Noue, Efficiency of immobilized
hyperconcentrated algae for ammonium and orthophosphorus
removal from wastewater, Biotechnol. Lett., 7 (1985) 395–400
- M.V. Jiménez-Pérez, P. Sánchez-Castillo, O. Romera, D.
Fernández-Moreno, C. Pérez-Martínez, Growth and nutrient
removal in free and immobilized planktonic green algae
isolated from pig manure, Enzyme Microb. Technol., 34 (2004)
392–398.
- P.H. James, Wastewater treatment with suspended and
nonsuspended algae, J. Appl. Phycol., 34 (1998) 757–763.
- N.F. Tam, Y.S. Wang, Effect of immobilized microalgal bead
concentration on wastewater nutrient removal, Environ. Pollut.,
107 (2000) 145–151.
- S.M. Moreira, M. Moreira-Santos, L. Guilhermino, R. Ribeiro,
Immobilization of the marine microalga Phaeodactylum
tricornutum in alginate for in situ experiments: bead stability
and suitability, Enzyme Microb. Technol., 38 (2006) 135–141.
- S. Hertzberg, A. Jenson, Studies of alginate immobilized marine
micro algae, Bot. Mar., 32 (1989) 267–273.
- H. He, M. Zhou, J. Yang, Y. Hu, Y. Zhao. Simultaneous
wastewater treatment, electricity generation and biomass
production by an immobilized photosynthetic algal microbial
fuel cell, Bioprocess. Biosyst. Eng., 37 (2014) 873–880.
- M.H.A. El-Nadi, F.A.G.H. El-Sergany, O.M. El-Hosseiny,
Desalination using algae ponds under nature Egyptian
conditions, J. Water Res. Ocean Sci., 3 (2014) 69–73.
- A.B. El-Sayed, M.M. El-Fouly, E.A.A.A. El-Nour, Immobilized
microalga Scenedesmus sp. for miological desalination of Red
Sea water: I. Effect on growth, Nature Sci., 8 (2010) 69–76.
- M.M. Allen, R.Y. Steiner, Growth and division of some
unicellular blue-green algae, J. Gen. Microbiol., 51 (1968)
199–202.
- G. Mackinney, Absorption of light by chlorophyll solutions, J.
Biol. Chem., 140 (1941) 315–322.
- M. Fisher, I. Gokhman, U. Pick, A. Zamir, A structurally novel
transferrin-like protein accumulates in the plasma membrane
of the unicellular green alga Dunaliella sálina grown in high
salinities, J. Biol. Chem., 272 (1997) 1565–l570.
- T.B. Kinraide, Interactions among Ca2+, Na+ and Cl– in
salinity toxicity: quantitative resolution of multiple toxic and
ameliorative effects, J. Exp. Bot., 50 (1999) 1495–1505.
- P. Chevalier, J. Noue, Wastewater nutrient removal with
microalgae immobilized in carrageenan, Enzyme Microb.
Technol., 7 (1985) 621–624.
- P.S. Lau, N.F.Y Tam, Y.S. Wong, Wastewater nutrients (N and
P) removal by carrageenan and alginate immobilized Chlorella
vulgaris, Environ. Technol., 18 (1997) 945–951.
- P.K. Robinson, A.L. Dainty, K.H. Goulding, I. Simpkins, M.D.
Trevan, Physiology of enzyme alginate immobilized Chlorella,
Enzyme Microb. Technol., 7 (1985) 212–216.
- G.O. Kirst, Salinity tolerance of eukaryotic marine algae, Annu.
Rev. Plant Physiol. Plant Mol. Biol., 41 (1990) 21–53.
- U. Karsten, G.O. Kirst, Incomplete turgor pressure regulation in
the terrestrial red alga Bostrychia scorpioides (Huds.) Mont, Plant
Sci., 61 (1989) 29–36.
- A.S. Mostaert, U. Karsten, R.J. King, Inorganic ions and mannitol
in the red alga Caloglossa leprieurii (Ceramiales, Rhodophyta):
response to salinity change, Phycologia, 34 (1995) 501–507.