References

  1. A.N. Jha, Genotoxicological studies in aquatic organisms: an overview, Mutat. Res. Fund. Mol., 552 (2004) 1–17.
  2. Y. Zhang, Z. Jiang, J. Huang, L.Y. Lim, W. Li, J. Deng, D. Gong, Y. Tang, Y. Lai, Z. Chen, Titanate and titania nanostructured materials for environmental and energy applications: a review, RSC Adv., 5 (2015) 79479–79510.
  3. M.R. Awual, T. Yaita, Y. Miyazaki, D. Matsumura, H. Shiwaku, T. Taguchi, A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Sci. Rep., 6 (2016) 19937.
  4. C. Delchet, A. Tokarev, X. Dumail, G. Toquer, Y. Barre, Y. Guari, C. Guerin, J. Larionova, A. Grandjean, Extraction of radioactive cesium using innovative functionalized porous materials, RSC Adv., 2 (2012) 5707–5716.
  5. B. Filipowicz, M. Pruszyński, S. Krajewski, A. Bilewicz, Adsorption of 137Cs on titanate nanostructures, J. Radioanal. Nucl. Chem., 301 (2014) 889–895.
  6. D. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, S. Komarneni, Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes, Angewandte Chemie Int. Ed., 50 (2011) 10594–10598.
  7. K. Haselwandter, M. Berreck, P. Brunner, Fungi as bioindicators of radiocaesium contamination: Pre- and post-Chernobyl activities, Trans. British Mycol. Soc., 90 (1988) 171–174.
  8. T. Sawidis, G. Heinrich, M.K. Chettri, Cesium-137 monitoring using mosses from Macedonia, N. Greece, Water Air Soil Pollut., 110 (1999) 171–179.
  9. S. Chibowski, M. Reszka, Investigation of Lublin town environment contamination by radionuclides and heavy metals with application of Parmeliaceae lichens, J. Radioanal. Nucl. Chem., 247 (2001) 443–446.
  10. A. Dolhanczuk-Srodka, M. Waclawek, Cesium-137 translocation in environment, Ecol. Chem. Eng. Sci., 14 (2007) 147–168.
  11. J.E. Martin, F.D. Fenner, Radioactivity in municipal sewage and sludge, Public Health Rep., 112 (1997) 308.
  12. S. Sarina, A. Bo, D. Liu, H. Liu, D. Yang, C. Zhou, N. Maes, S. Komarneni, H. Zhu, Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents, Chem. Mater., 26 (2014) 4788–4795.
  13. K. Shakir, M. Sohsah, M. Soliman, Removal of cesium from aqueous solutions and radioactive waste simulants by coprecipitate flotation, Sep. Purif. Technol., 54 (2007) 373–381.
  14. V. Kouřím, Coprecipitation of carrier-free caesium with 12-heteropolyacids in a strong acid medium, J. Inorg. Nucl. Chem., 12 (1960) 370–372.
  15. E. Makrlík, P. Toman, P. Vaňura, B.A. Moyer, Interaction of the cesium cation with calix[4] arene-bis (t-octylbenzo-18-crown-6): extraction and DFT study, J. Mol. Struct., 1033 (2013) 14–18.
  16. E. Makrlik, P. Vaňura, Synergistic extraction of some univalent cations into nitrobenzene by using cesium dicarbollylcobaltate and dibenzo-30-crown-10, J. Radioanal. Nucl. Chem., 295 (2013) 911–914.
  17. A.L. Mascarelli, Funding Cut for US Nuclear Waste Dump, Nature Publishing Group, 2009.
  18. S. Tsuruoka, B. Fugetsu, F. Khoerunnisa, D. Minami, K. Takeuchi, M. Fujishige, T. Hayashi, Y.A. Kim, K.C. Park, M. Asai, Intensive synergetic Cs adsorbent incorporated with polymer spongiform for scalable purification without post filtration, Mater. Express., 3 (2013) 21–29.
  19. N. Ding, M.G. Kanatzidis, Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide, Nat. Chem., 2 (2010) 187–191.
  20. L. Van Loon, B. Baeyens, M. Bradbury, The sorption behaviour of caesium on Opalinus clay: a comparison between intact and crushed material, Appl. Geochem., 24 (2009) 999–1004.
  21. Á. Kukovecz, K. Kordás, J. Kiss, Z. Kónya, Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires, Surf. Sci. Rep., 71 (2016) 473–546.
  22. H.Y. Zhu, Y. Lan, X. Gao, S.P. Ringer, Z. Zheng, D.Y. Song, J.-C. Zhao, Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions, J. Am. Chem. Soc., 127 (2005) 6730–6736.
  23. Y.I. Kim, S. Salim, M.J. Huq, T.E. Mallouk, Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles, J. Am. Chem. Soc., 113 (1991) 9561–9563.
  24. N. Sukpirom, M.M. Lerner, Preparation of organic–inorganic nanocomposites with a layered titanate, Chem. Mater., 13 (2001) 2179–2185.
  25. D.J. Yang, Z.F. Zheng, H.Y. Zhu, H.W. Liu, X.P. Gao, Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water, Adv. Mater., 20 (2008) 2777–2781.
  26. F. Fenyvesi, Z. Kónya, Z. Rázga, M. Vecsernyés, P. Kása, K. Pintye-Hódi, I. Bácskay, Investigation of the cytotoxic effects of titanate nanotubes on CaCO2 cells, AAPS PharmSciTech, 15 (2014) 858–861.
  27. Y. Dongjiang, S. Sarina, Z. Huaiyong, L. Hongwei, Z. Zhanfeng, X. Mengxia, S.V. Smith, K. Sridhar, Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes, Angewandte Chemie Int. Ed., 50 (2011) 10594–10598.
  28. N. Liu, X. Chen, J. Zhang, J. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications, Catal. Today, 225 (2014) 34–51.
  29. B.A. Koeneman, Y. Zhang, P. Westerhoff, Y. Chen, J.C. Crittenden, D.G. Capco, Toxicity and cellular responses of intestinal cells exposed to titanium dioxide, Cell Biol. Toxicol., 26 (2010) 225–238.
  30. J. Zhang, W. Song, J. Guo, J. Zhang, Z. Sun, L. Li, F. Ding, M. Gao, Cytotoxicity of different sized TiO2 nanoparticles in mouse macrophages, Toxicol. Ind. Health, 29 (2013) 523–533.
  31. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65 (1983) 55–63.
  32. C.-C. Tsai, H. Teng, Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments, Chem. Mater., 18 (2006) 367–373.
  33. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2, J. Mol. Catal. A, 217 (2004) 203–210.
  34. W. Wang, J. Zhang, H. Huang, Z. Wu, Z. Zhang, Investigation of monolayer dispersion of benzoic acid supported on the surface of H-titanate nanotubes, Appl. Surf. Sci., 253 (2007) 5393–5399.
  35. Operational Control of Coagulation and Filtration Processes, American Water Works Association, 2011.
  36. A. Nilchi, T.S. Dehaghan, S.R. Garmarodi, Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles, Desalination, 321 (2013) 67–71.
  37. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  38. H. Freundlich, Über die Adsorption in Lösungen, in Zeitschrift für Physikalische Chemie, 1907, p. 385.
  39. K. Banerjee, G.L. Amy, M. Prevost, S. Nour, M. Jekel, P.M. Gallagher, C.D. Blumenschein, Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH), Water Res., 42 (2008) 3371–3378.