References
- D. Borah, M. Bera, Watershed-scale hydrologic and nonpointsource
pollution models: review of mathematical bases, Trans.
ASAE, 46 (2003) 1553.
- R. Jamieson, R. Gordon, D. Joy, H. Lee, Assessing microbial
pollution of rural surface waters: a review of current watershed
scale modeling approaches, Agric. Water Manage., 70 (2004)
1–17.
- E.G. Bekele, H.V. Knapp, Watershed modeling to assessing
impacts of potential climate change on water supply availability,
Water Resour. Manage., 24 (2010) 3299–3320.
- K. Price, Effects of watershed topography, soils, land use, and
climate on baseflow hydrology in humid regions: a review,
Prog. Phys. Geogr., 35 (2011) 465–492.
- C. Wellen, A.-R. Kamran-Disfani, G.B. Arhonditsis, Evaluation
of the current state of distributed watershed nutrient water
quality modeling, Environ. Sci. Technol., 49 (2015) 3278–3290.
- K.H. Cho,Y.A. Pachepsky, J.H. Kim, J.-W. Kim, M.-H. Park,
The modified SWAT model for predicting fecal coliforms in
the Wachusett Reservoir Watershed, USA, Water Res., 46 (2012)
4750–4760.
- M. Geza, J.E. McCray, Effects of soil data resolution on SWAT
model stream flow and water quality predictions, J. Environ.
Manage., 88 (2008) 393–406.
- I. Chaubey, A. Cotter, T. Costello, T. Soerens, Effect of DEM
data resolution on SWAT output uncertainty, Hydrol. Process,
19 (2005) 621–628.
- J.-M. Faurès, D. Goodrich, D.A. Woolhiser, S. Sorooshian,
Impact of small-scale spatial rainfall variability on runoff
modeling, J. Hydrol., 173 (1995) 309–326.
- M. Yu, X. Chen, L. Li, A. Bao, M.J. De la Paix, Streamflow
simulation by SWAT using different precipitation sources
in large arid basins with scarce raingauges, Water Resour.
Manage., 25 (2011) 2669.
- V. Neary, E. Habib, M. Fleming, Hydrologic modeling with
NEXRAD precipitation in middle Tennessee, J. Hydrol. Eng., 9
(2004) 339–349.
- L. Kalin, M.M. Hantush, Hydrologic modeling of an eastern
Pennsylvania watershed with NEXRAD and rain gauge data, J.
Hydrol. Eng., 11 (2006) 555–569.
- S. Eleuch, A. Carsteanu, K. Bâ, R. Magagi, K. Goïta, C. Diaz,
Validation and use of rainfall radar data to simulate water
flows in the Rio Escondido basin, Stochastic Environ. Res. Risk
Assess., 24 (2010) 559–565.
- A. Elhassan, H. Xie, A.A. Al-othman, J. Mcclelland, H.O. Sharif,
Water quality modelling in the San Antonio River Basin driven
by radar rainfall data, Geomatics, Geomat. Nat. Hazards Risk, 7
(2016) 953–970.
- R. Jayakrishnan, R. Srinivasan, C. Santhi, J. Arnold, Advances
in the application of the SWAT model for water resources
management, Hydrol. Process., 19 (2005) 749–762.
- P.-A. Versini, Use of radar rainfall estimates and forecasts to
prevent flash flood in real time by using a road inundation
warning system, J. Hydrol., 416 (2012) 157–170.
- S. Rozalis, E. Morin, Y. Yair, C. Price, Flash flood prediction using
an uncalibrated hydrological model and radar rainfall data
in a Mediterranean watershed under changing hydrological
conditions, J. Hydrol., 394 (2010) 245–255.
- J.P. Looper, B.E. Vieux, An assessment of distributed flash flood
forecasting accuracy using radar and rain gauge input for a
physics-based distributed hydrologic model, J. Hydrol., 412
(2012) 114–132.
- W. Yu, E. Nakakita, S. Kim, K. Yamaguchi, Improvement
of rainfall and flood forecasts by blending ensemble NWP
rainfall with radar prediction considering orographic rainfall,
J. Hydrol., 531 (2015) 494–507.
- J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large
area hydrologic modeling and assessment part I: model
development, JAWRA, 34 (1998) 73–89.
- M. Gitau, T. Veith, W. Gburek, Farm–level optimization of
BMP placement for cost–effective pollution reduction, Trans.
ASAE, 47 (2004) 1923.
- K.C. Abbaspour, J. Yang, I. Maximov, R. Siber, K. Bogner, J.
Mieleitner,J . Zobrist, R. Srinivasan, Modelling hydrology and
water quality in the pre-alpine/alpine Thur watershed using
SWAT, J. Hydrol., 333 (2007) 413–430.
- J.-K. Lee, J.-H. Kim, M.-K. Suk, Application of bias correction
methods to improve the accuracy of quantitative radar rainfall
in Korea, Atmos. Meas. Tech., 8 (2015) 4011–4047.
- M.D. McKay, R.J. Beckman, W.J. Conover, Comparison of three
methods for selecting values of input variables in the analysis
of output from a computer code, Technometrics, 21 (1979)
239–245.
- J.E. Nash, J.V. Sutcliffe, River flow forecasting through
conceptual models part I—A discussion of principles, J.
Hydrol., 10 (1970) 282–290.
- R.H. McCuen, Z. Knight, A.G. Cutter, Evaluation of the Nash–
Sutcliffe efficiency index, J. Hydrol. Eng., 11 (2006) 597–602.
- H.V. Gupta, S. Sorooshian, P.O. Yapo, Status of automatic
calibration for hydrologic models: comparison with multilevel
expert calibration, J. Hydrol. Eng., 4 (1999) 135–143.
- F. Marra, E.I. Nikolopoulos, J.D. Creutin, M. Borga, Radar
rainfall estimation for the identification of debris-flow
occurrence thresholds, J. Hydrol., 519 (2014) 1607–1619.
- K. Price, S.T. Purucker, S.R. Kraemer, J.E. Babendreier, C.D.
Knightes, Comparison of radar and gauge precipitation data in
watershed models across varying spatial and temporal scales,
Hydrol. Process, 28 (2014) 3505–3520.
- D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D.
Harmel, T.L. Veith, Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, Trans.
ASABE, 50 (2007) 885–900.
- D. Zhang, X. Chen, H. Yao, B. Lin, Improved calibration scheme
of SWAT by separating wet and dry seasons, Ecol. Modell., 301
(2015) 54–61.
- K. Price, S.T. Purucker, S.R. Kraemer, J.E. Babendreier, Tradeoffs
among watershed model calibration targets for parameter
estimation, Water Resour. Res., 48 (2012) 10.
- N. Kannan, S. White, F. Worrall, M. Whelan, Hydrological
modelling of a small catchment using SWAT-2000–Ensuring
correct flow partitioning for contaminant modelling, J. Hydrol.,
334 (2007) 64–72.
- M. Larose, G. Heathman, L. Norton, B. Engel, Hydrologic and
atrazine simulation of the Cedar Creek watershed using the
SWAT model, J. Environ. Qual., 36 (2007) 521–531.
- A. Stehr, P. Debels, F. Romero, H. Alcayaga, Hydrological
modelling with SWAT under conditions of limited data
availability: evaluation of results from a Chilean case study,
Hydrol. Sci. J., 53 (2008) 588–601.
- L.-j. Qiu, F.-l. Zheng, R.-s. Yin, SWAT-based runoff and sediment
simulation in a small watershed, the loessial hilly-gullied region
of China: capabilities and challenges, Int. J. Sediment Res., 27
(2012) 226–234.
- J. Moon, R. Srinivasan, J. Jacobs, Stream flow estimation using
spatially distributed rainfall in the Trinity River basin, Texas,
Trans. ASAE, 47 (2004) 1445.
- G. Di Baldassarre, A. Montanari, Uncertainty in river discharge
observations: a quantitative analysis, Hydrol. Earth Syst. Sci., 13
(2009) 913.
- D.M. Thomas, M.A. Benson. Generalization of Streamflow
Characteristics from Drainage-Basin Characteristics, US
Government Printing Office Washington, D.C., 1970.
- K. Eng, P. Milly, Relating low‐flow characteristics to the base
flow recession time constant at partial record stream gauges,
Water Resour. Res., 43 (2007) 1.
- H. Li, M. Sivapalan, F. Tian, Comparative diagnostic analysis
of runoff generation processes in Oklahoma DMIP2 basins: the
Blue River and the Illinois River, J. Hydrol., 418 (2012) 90–109.