References
- H. Ye, Y. Wang, X. Zhang, Z. Zhang, B. Song, Polyurethane
membrane with a cyclodextrin-modified carbon nanotube
for pervaporation of phenol/water mixture, J. Polym. Eng., 37
(2017) 449–459.
- M.A. Hararah, K.A. Ibrahim, A.H. Al-Muhtaseb, R.I. Yousef, A.
Abu-Surrah, A. Qatatsheh, Removal of phenol from aqueous
solutions by adsorption onto polymeric adsorbents, J. Appl.
Polym. Sci., 117 (2010) 1908–1913.
- H. Fan, Q. Shi, H. Yan, S. Ji, J. Dong, G. Zhang, Simultaneous
spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid
membranes exhibiting exceptionally high biobutanolpermselective
pervaporation, Angew. Chem. Int. Ed., 53 (2014)
5578–5582.
- G. Liu, W. Wei, W. Jin, Pervaporation membranes for
biobutanol production, ACS Sustainable Chem. Eng., 2 (2014)
546–560.
- X. Lin, L. Xiong, G. Qi, Using butanol fermentation wastewater for
biobutanol production after removal of inhibitory compounds
by micro/mesoporous hyper-cross-linked polymeric adsorbent,
ACS Sustainable Chem. Eng., 3 (2015) 702–709.
- H. Ye, X. Zhang, Z. Zhang, B. Song, W. Song, Application of
polyurethane membrane with surface modified ZSM-5 for
pervaporation of phenol/water mixture, J. Polym. Eng., 37
(2017) 777–784.
- P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J.
Msayib, C.E. Tattershall, Polymers of intrinsic microporosity
(PIMs): robust, solution-processable, organic nanoporous
materials, Chem. Commun., 2 (2004) 230–231.
- N.B. McKeown, P.M. Budd, Polymers of intrinsic microporosity
(PIMs): organic materials for membrane separations,
heterogeneous catalysis and hydrogen storage, Chem. Soc.
Rev., 35 (2006) 675–683.
- N.B. McKeown, P.M. Budd, Exploitation of intrinsic
microporosity in polymer-based materials, Macromolecules,
43 (2010) 5163–5176.
- N.B. McKeown, S. Hanif, K. Msayib, C.E. Tattershall, P.M.
Budd, Porphyrin-based nanoporous network polymers, Chem.
Commun., 23 (2002) 2782–2783.
- N. Du, M.M. Cin, I. Pinnau, A. Nicalek, G.P. Robertson, M.D.
Guiver, Azide-based cross-linking of polymers of intrinsic
microporosity (PIMs) for condensable gas separation,
Macromol. Rapid Commun., 32 (2011) 631–636.
- P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J.
Reynolds, N.J. Mckeown, D. Fritsch, Gas separation membranes
from polymers of intrinsic microporosity, J. Membr. Sci., 251
(2005) 263–269.
- S. Thomas, I. Pinnau, N. Du, M. Guiver, Hydrocarbon/hydrogen
mixed-gas permeation properties of PIM-1, an amorphous
microporous spirobisindane polymer, J. Membr. Sci., 338 (2009)
1–4.
- X.M. Wu, Q.G. Zhang, F. Soyekwo, Q.L. Liu, A.M. Zhu,
Pervaporation removal of volatile organic compounds
from aqueous solutions using the highly permeable PIM-1
membrane, AIChE J., 62 (2016) 842–851.
- S.V. Adymkanov, Y.P. Yampol’Skii, A.M. Polyakov, P.M. Budd,
K.J. Reynolds, N.B. McKeown, K.J. Msayib, Pervaporation
of alcohols through highly permeable PIM-1 polymer films,
Polym. Sci. Ser. A Polym. Phys., 50 (2008) 444–450.
- P.M. Budd, E.S. Elabas, B.S. Ghanem, S. Makhseed, N.B.
McKeown, K.J. Msayib, C.E. Tattershall, D. Wang, Solutionprocessed,
organophilic membrane derived from a polymer of
intrinsic microporosity, Adv. Mater., 16 (2004) 456–459.
- L. Gao, M. Alberto, P. Gorgojo, G. Szekely, P.M. Budd,
High-flux PIM-1/PVDF thin film composite membranes for
1-butanol/water pervaporation, J. Membr. Sci., 529 (2017)
207–214.
- M.M. Khan, G. Bengtson, S. Shishatskiy, B.N. Gacal, Md.M.
Rahman, S. Neumann, V. Filiz, V. Abetz, Cross-linking of
polymer of intrinsic microporosity (PIM-1) via nitrene reaction
and its effect on gas transport property, Eur. Polym. J., 49 (2013)
4157–4166.
- B. Satilmis, M.N. Alnajrani, P.M. Budd,
Hydroxyalkylaminoalkylamide PIMs: selective adsorption
by ethanolamine- and diethanolamine-modified PIM-1,
Macromolecules, 48 (2015) 5663–5669.
- H. Zhao, Q. Xie, X. Ding, J. Chen, M. Hua, X. Tan, Y. Zhang, High
performance post-modified polymers of intrinsic microporosity
(PIM-1) membranes based on multivalent metal ions for gas
separation, J. Membr. Sci., 514 (2016) 305–312.
- C.R. Mason, M.G. Buonomenna, G. Golemme, P.M. Budd,
F. Galiano, A. Figoli, K. Friess, V. Hynek, New organophilic
mixed matrix membranes derived from a polymer of intrinsic
microporosity and silicalite-1, Polymer, 54 (2013) 2222–2230.
- M.M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, Md.M. Rahman,
J. Lillepaerg, V. Abetz, Enhanced gas permeability by fabricating
mixed matrix membranes of functionalized multiwalled carbon
nanotubes and polymers of intrinsic microporosity (PIM), J.
Membr. Sci., 436 (2013) 109–120.
- M. Alberto, J.M. Luque-Alled, L. Gao, M. Iliut, E. Prestat,
L. Newman, S.J. Haigh, A. Vijayaraghavan, P.M. Budd, P.
Gorgojo, Enhanced organophilic separations with mixed
matrix membranes of polymers of intrinsic microporosity and
graphene-like fillers, J. Membr. Sci., 526 (2017) 437–449.
- W.F. Yong, F.Y. Li, Y.C. Xiao, P. Li, K.P. Pramoda, Y.W. Tong,
T.S. Chung, Molecular engineering of PIM-1/Matrimid blend
membranes for gas separation, J. Membr. Sci., 407–408 (2012)
47–57.
- X.M. Wu, Q.G. Zhang, P.J. Lin, Y. Qu, A.M. Zhu, Q.L. Liu,
Towards enhanced CO2 selectivity of the PIM-1 membrane by
blending with polyethylene glycol, J. Membr. Sci., 493 (2015)
147–155.
- L. Hao, J. Zuo, T.-S. Chung, Formation of defect-free
polyetherimide/PIM-1 hollow fiber membranes for gas
separation, AIChE J., 60 (2014) 3848–3858.
- W. Kujawski, A. Warszawski, W. Ratajczak, T. Porbski, W.
Capała, I. Ostrowska, Application of pervaporation and
adsorption to the phenol removal from wastewater, Sep. Purif.
Technol., 40 (2004) 123–132.
- P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental
study of organofunctionalised PDMS membranes for the
pervaporative recovery of phenolic compounds from aqueous
streams, J. Membr. Sci., 190 (2001) 147–157.
- T. Gupta, N.C. Pradhan, B. Adhikari, Synthesis and performance
of a novel polyurethaneurea as pervaporation membrane for
the selective removal of phenol from industrial waste water,
Bull. Mater. Sci., 25 (2002) 533–536.
- S. Das, A.K. Banthia, B. Adhikari, Porous polyurethane urea
membranes for pervaporation separation of phenol and
chlorophenols from water, Chem. Eng. J., 138 (2008) 215–223.
- U. Ghosh, N.C. Pradhan, B. Adhikari, Separation of water
and o-chlorophenol by pervaporation using HTPB-based
polyurethaneurea membranes and application of modified
Maxwell-Stefan equation, J. Membr. Sci., 272 (2006) 93–102.
- B. Satilmis, P.M. Budd, Base-catalysed hydrolysis of PIM-
1: amide versus carboxylate formation, RSC Adv., 4 (2014)
52189–52198.
- Y. Wang, T.S. Chung, B.W. Neo, M. Gruender, Processing and
engineering of pervaporation dehydration of ethylene glycol
via dual-layer polybenzimidazole (PBI)/polyetherimide (PEI)
membranes, J. Membr. Sci., 378 (2011) 339–350.
- T. Atoguchi, T. Kanougi, T. Yamamoto, S. Yao, Phenol oxidation
into catechol and hydroquinone over H-MFI, H-MOR, H-USY
and H-BEA in the presence of ketone, Mol. Catal. A: Chem., 220
(2004) 183–187.
- G. Zhang, W. Gu, S. Ji, Z. Liu, Y. Peng, Z. Wang, Preparation
of polyelectrolyte multilayer membranes by dynamic layerby-
layer process for pervaporation separation of alcohol/water
mixtures, J. Membr. Sci., 280 (2006) 727–733.
- C. Ding, X. Zhang, C. Li, X. Hao, Y. Wang, G. Guan, ZIF-8
incorporated polyether block amide membrane for phenol
permselective pervaporation with high efficiency, Sep. Purif.
Technol., 166 (2016) 252–261.
- N.L. Le, Y. Wang, T.-S. Chung, Pebax/POSS mixed matrix
membranes for ethanol recovery from aqueous solutions via
pervaporation, J. Membr. Sci., 379 (2011) 174–183.
- X. Feng, R.Y.M. Huang, Estimation of activation energy for
permeation in pervaporation processes, J. Membr. Sci., 118
(1996) 127–131.
- M.I. Yagofarov, R.N. Nagrimanov, B.N. Solomonov,
Relationships between fusion, solution, vaporization and
sublimation enthalpies of substituted phenols, J. Chem.
Thermodyn., 105 (2017) 50–57.
- X. Wang, J. Chen, M. Fang, T. Wang, L. Yu, J. Li, ZIF-7/PDMS
mixed matrix membranes for pervaporation recovery of butanol
from aqueous solution, Sep. Purif. Technol., 163 (2016) 39–47.
- B. Sinha, U.K. Ghosh, N.C. Pradhan, B. Adhikari, Separation
of phenol from aqueous solution by membrane pervaporation
using modified polyurethaneurea membranes, J. Appl. Polym.
Sci., 101 (2006) 1857–1865.
- F. Pithan, C. Staudt-Bickel, Crosslinked copolyimide membranes
for phenol recovery from process water by pervaporation,
Chem. Phys. Chem., 4 (2003) 967–973.