References
- World Health Organization, Guidelines for Drinking-Water
Quality, Geneva, 2006.
- R.D. Letterman, Ed., Water Quality and Treatment: A
Handbook of Community Water Supplies, American Water
Works Association, Denver, CO, 1999.
- V. Rondeau, H. Jacqmin-Gadda, D. Commenges, C. Helmer,
J. Dartigues, Aluminium and silica in drinking water and the
risk of Alzheimer’s disease or cognitive decline: findings from
15-year follow-up of the PAQUID cohort, Am. J. Epidemiol., 169
(2009) 489–496.
- A. Campell, The role of aluminium and copper on
neuroinflammation and Alzheimer’s disease, J. Alzheimers
Dis., 10 (2006) 165–172.
- J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of
coagulation using aluminium salts - I. Hydrolytic reactions
of alum and polyaluminium chloride, Water Res., 24 (1990)
1519–1526.
- J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of
coagulation using aluminium salts - II. Coagulation of fulvic
acid using alum and polyaluminium chloride, Water Res., 24
(1990) 1527–1535.
- C. Huang, H. Shiu, Interactions between alum and organics in
coagulation, Colloids Surf. A, 113 (1996) 155–163.
- M. Akbarizadeh, A. Daghbandan, M. Yaghoobi, Modeling and
optimization of poly electrolyte dosage in water treatment
process by GMDH type-NN and MOGA, IGCCE, 3 (2013)
94–106.
- S. Heddam, A. Bermad, N. Dechemi, ANFIS-based modeling
for coagulant dosage in drinking water treatment plant: a case
study, Environ. Monit. Assess., 184 (2012) 1953–1971.
- T.-W. Ha, K.-H. Choo, S.-J. Choi, Effect of chlorine on adsorption/ultration treatment for removing natural organic matter in
drinking water, J. Colloid Interface Sci., 274 (2004) 587–593.
- A.G. Ivakhnenko, Group method of data handling-rival of
method of stochastic approximation, Sov. Autom. Control, 13
(1968) 43–55.
- S. Ikeda, S. Fugishige, Y. Sawaragi, Nonlinear prediction model
of river flow by self-organization method, Int. J. Syst. Sci., 7
(1976) 165–176.
- H. Tamura, T. Kondo, Heuristics free group method data
handling algorithm of generating optimal partial polynomials
with application to air pollution prediction, Int. J. Syst. Sci., 11
(1980) 1095–1111.
- T. Yoshimura, R. Kiyozumi, K. Nishino, T. Soeda, Prediction of
air pollutant concentrations by revised GMDH algorithms in
Tokushima Prefecture, IEEE Trans. Syst. Man Cybern. SMC, 12
(1982) 50–56.
- S.J. Farlow, Self-Organizing Methods in Modeling: GMDHType
Algorithms, Marcel Dekker, New York, 1984.
- W.M. Lebow, R.K. Mehra, H. Rice, P.M. Tolgalagi, Forecasting
Applications in Agricultural and Meteorological Time Series,
In: S.J. Farrow, Ed., Self-organizing Methods in Modeling,
GMDH Type Algorithms, Marcel Dekker, New York, 1984.
- A.G. Ivakhnenko, G.A. Ivakhnenko, J.A. Muller, Selforganization
of the neural networks with active neurons,
Pattern Recogn., 4 (1994) 177–188.
- T. Kondo, A.S. Pandya, J.M. Zurada, GMDH-type Neural
Networks and Their Application to the Medical Image
Recognition of the Lungs, Proc. 38th SICE Annual Conference,
Vol. 3, 1999, pp. 1181–1186.
- F.J. Chang, Y.Y. Hwang, A self-organization algorithm for
realtime flood forecast, Hydrol. Process, 13 (1999) 123–138.
- L. Sarycheva, Using GMDH in ecological and socio-economical
monitoring problems, Syst. Anal. Model Simul. (SAMS), 43
(2003) 1409–1414.
- N. Pavel, S. Miroslav, Modeling of student’s quality by means
of GMDH algorithms, Syst. Anal. Model Simul. (SAMS), 43
(2003) 1415–1426.
- S.L. Hwang, G.F. Liang, J.T. Lin, Y.J. Yau, T.C. Yenn, C.C.
Hsu, C.F. Chuang, A real-time warning model for teamwork
performance and system safety in nuclear power plants, Saf.
Sci., 47 (2009) 425–435.
- T.M. Tsai, P.H. Yen, T.J. Huang, Wave Height Forecasting Using
Self-organization Algorithm Model, International Offshore and
Polar Engineering Conference Osaka, Japan, 4 (2009) 806–812.
- M. Najafzadeh, Neurofuzzy-based GMDH-PSO to predict
maximum scour depth at equilibrium at culvert outlets, J.
Pipeline Syst. Eng. Pract., 7 (2015) 1–5.
- M. Najafzadeh, G.A. Barani, M.A. Hazi, GMDH to predict
scour depth around a pier in cohesive soils, Appl. Ocean Res.,
40 (2013) 35–41.
- M. Najafzadeh, G.A. Barani, M,R. Hessami Kermani, Group
method of data handling to predict scour at downstream of a
skijump bucket spillway, Earth Sci. Inform., 7 (2014) 231–248.
- M. Najafzadeh. G.A. Barani, M.R. Hessami-Kermani, Evaluation
of GMDH networks for prediction of local scour depth at bridge
abutments in coarse sediments with thinly armored beds,
Ocean Eng., 104 (2015) 387–396.
- P.C. Verpoort, P. MacDonald, G.J. Conduit, Materials data
validation and imputation with an artificial neural network,
Comput. Mater. Sci., 147 (2018) 176–185.
- N. Maleki, S. Kashanian, E. Maleki, M. Nazari, A Novel Enzyme
Based Biosensor for Catechol Detection in Water Samples Using
Artificial Neural Network, Biochem. Eng. J., 128 (2015) 1–11.
- E. Maleki, O. Unal, K.R. Kashyzadeh, Fatigue behavior
prediction and analysis of shot peened mild carbon steels, Int. J.
Fatigue, 116 (2018) 48–67.
- E. Maleki, G.H. Farrahi, Modelling of conventional and severe
shot peening influence on properties of high carbon steel via
artificial neural network, Int. J. Eng. Sci., 31 (2018) 382–393.
- P. Chaves, T. Kojiri, Deriving reservoir operational strategies
considering water quantity and quality objectives by stochastic
fuzzy neural networks, Adv. Water Resour., 30 (2007) 1329–1341.
- P. Juntunen, M. Liukkonen, M. Pelo, M.J. Lehtola, Y. Hiltunen,
Modelling of Water Quality: An Application to a Water
Treatment Process, Appl. Comput. Intell. Soft Comput., 2 (2012)
1–9.
- A. Rak, Water Turbidity Modelling During Water Treatment
Processes Using Artificial Neural Networks, Int. J. Water Sci., 29
(2013) 1–10.
- M.J. Kennedy, A.H. Gandomiab, C.M. Millera, Coagulation
modeling using artificial neural networks to predict both
turbidity and DOM-PARAFAC component removal, J. Environ.
Chem. Eng., 3 (2015) 2829–2838.
- M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental
design for pollutants removal in water treatment with the aid of
artificial intelligence, Chemosphere, 200 (2018) 330–343.
- A. Jamali, A. Hajiloo, N. Nariman-zadeh, Reliability-based
robust Pareto design of linear state feedback controllers using
a multi-objective uniform-diversity genetic algorithm (MUGA),
Expert Syst. Appl., 37 (2010) 401–413.
- L. Yang, H. Yang, H. Liu, GMDH-Based Semi-Supervised
Feature Selection for Electricity Load Classification Forecasting,
Sustainability, 10 (2018) 1–16.
- A.G. Ivakhnenko, J.A. Müller, Recent developments of selforganizing
modeling in prediction and analysis of stock market,
Microelectron. Reliab., 37 (1995) 1053–1072.
- A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE
Trans. Syst. Man Cybern., 4 (1971) 364–378.
- H. Iba, T. Sato, A numerical approach to genetic programming
for system identification, Evolut. Comput., 3 (1995) 417–452.
- N. Nariman-Zadeh, A. Darvizeh, G.R. Ahmad-Zadeh, Hybrid
genetic design of GMDH-type neural networks using singular
value decomposition for modeling and prediction of the
explosive cutting process, Proc. Inst. Mech. Eng. B: J. Eng.
Manuf., 217 (2003) 779–790.
- N. Nariman Zadeh, A. Jamali, Pareto Genetic Design of GMDHtype
Neural Networks for Nonlinear Systems, International
Workshop on Inductive Modeling, Czech Technical University,
Prague, Czech Republic, 2007, pp. 96–103.
- N. Nariman-Zadeh, A. Darvizeh, A. Jamali, A. Moeini,
Evolutionary design of generalized polynomial neural networks
for modeling and prediction of explosive forming process, J.
Mater. Process. Technol., 164 (2005) 1561–1571.