References

  1. World Health Organization, Guidelines for Drinking-Water Quality, Geneva, 2006.
  2. R.D. Letterman, Ed., Water Quality and Treatment: A Handbook of Community Water Supplies, American Water Works Association, Denver, CO, 1999.
  3. V. Rondeau, H. Jacqmin-Gadda, D. Commenges, C. Helmer, J. Dartigues, Aluminium and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort, Am. J. Epidemiol., 169 (2009) 489–496.
  4. A. Campell, The role of aluminium and copper on neuroinflammation and Alzheimer’s disease, J. Alzheimers Dis., 10 (2006) 165–172.
  5. J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation using aluminium salts - I. Hydrolytic reactions of alum and polyaluminium chloride, Water Res., 24 (1990) 1519–1526.
  6. J.E. Van Benschoten, J.K. Edzwald, Chemical aspects of coagulation using aluminium salts - II. Coagulation of fulvic acid using alum and polyaluminium chloride, Water Res., 24 (1990) 1527–1535.
  7. C. Huang, H. Shiu, Interactions between alum and organics in coagulation, Colloids Surf. A, 113 (1996) 155–163.
  8. M. Akbarizadeh, A. Daghbandan, M. Yaghoobi, Modeling and optimization of poly electrolyte dosage in water treatment process by GMDH type-NN and MOGA, IGCCE, 3 (2013) 94–106.
  9. S. Heddam, A. Bermad, N. Dechemi, ANFIS-based modeling for coagulant dosage in drinking water treatment plant: a case study, Environ. Monit. Assess., 184 (2012) 1953–1971.
  10. T.-W. Ha, K.-H. Choo, S.-J. Choi, Effect of chlorine on adsorption/ultration treatment for removing natural organic matter in drinking water, J. Colloid Interface Sci., 274 (2004) 587–593.
  11. A.G. Ivakhnenko, Group method of data handling-rival of method of stochastic approximation, Sov. Autom. Control, 13 (1968) 43–55.
  12. S. Ikeda, S. Fugishige, Y. Sawaragi, Nonlinear prediction model of river flow by self-organization method, Int. J. Syst. Sci., 7 (1976) 165–176.
  13. H. Tamura, T. Kondo, Heuristics free group method data handling algorithm of generating optimal partial polynomials with application to air pollution prediction, Int. J. Syst. Sci., 11 (1980) 1095–1111.
  14. T. Yoshimura, R. Kiyozumi, K. Nishino, T. Soeda, Prediction of air pollutant concentrations by revised GMDH algorithms in Tokushima Prefecture, IEEE Trans. Syst. Man Cybern. SMC, 12 (1982) 50–56.
  15. S.J. Farlow, Self-Organizing Methods in Modeling: GMDHType Algorithms, Marcel Dekker, New York, 1984.
  16. W.M. Lebow, R.K. Mehra, H. Rice, P.M. Tolgalagi, Forecasting Applications in Agricultural and Meteorological Time Series, In: S.J. Farrow, Ed., Self-organizing Methods in Modeling, GMDH Type Algorithms, Marcel Dekker, New York, 1984.
  17. A.G. Ivakhnenko, G.A. Ivakhnenko, J.A. Muller, Selforganization of the neural networks with active neurons, Pattern Recogn., 4 (1994) 177–188.
  18. T. Kondo, A.S. Pandya, J.M. Zurada, GMDH-type Neural Networks and Their Application to the Medical Image Recognition of the Lungs, Proc. 38th SICE Annual Conference, Vol. 3, 1999, pp. 1181–1186.
  19. F.J. Chang, Y.Y. Hwang, A self-organization algorithm for realtime flood forecast, Hydrol. Process, 13 (1999) 123–138.
  20. L. Sarycheva, Using GMDH in ecological and socio-economical monitoring problems, Syst. Anal. Model Simul. (SAMS), 43 (2003) 1409–1414.
  21. N. Pavel, S. Miroslav, Modeling of student’s quality by means of GMDH algorithms, Syst. Anal. Model Simul. (SAMS), 43 (2003) 1415–1426.
  22. S.L. Hwang, G.F. Liang, J.T. Lin, Y.J. Yau, T.C. Yenn, C.C. Hsu, C.F. Chuang, A real-time warning model for teamwork performance and system safety in nuclear power plants, Saf. Sci., 47 (2009) 425–435.
  23. T.M. Tsai, P.H. Yen, T.J. Huang, Wave Height Forecasting Using Self-organization Algorithm Model, International Offshore and Polar Engineering Conference Osaka, Japan, 4 (2009) 806–812.
  24. M. Najafzadeh, Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets, J. Pipeline Syst. Eng. Pract., 7 (2015) 1–5.
  25. M. Najafzadeh, G.A. Barani, M.A. Hazi, GMDH to predict scour depth around a pier in cohesive soils, Appl. Ocean Res., 40 (2013) 35–41.
  26. M. Najafzadeh, G.A. Barani, M,R. Hessami Kermani, Group method of data handling to predict scour at downstream of a skijump bucket spillway, Earth Sci. Inform., 7 (2014) 231–248.
  27. M. Najafzadeh. G.A. Barani, M.R. Hessami-Kermani, Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds, Ocean Eng., 104 (2015) 387–396.
  28. P.C. Verpoort, P. MacDonald, G.J. Conduit, Materials data validation and imputation with an artificial neural network, Comput. Mater. Sci., 147 (2018) 176–185.
  29. N. Maleki, S. Kashanian, E. Maleki, M. Nazari, A Novel Enzyme Based Biosensor for Catechol Detection in Water Samples Using Artificial Neural Network, Biochem. Eng. J., 128 (2015) 1–11.
  30. E. Maleki, O. Unal, K.R. Kashyzadeh, Fatigue behavior prediction and analysis of shot peened mild carbon steels, Int. J. Fatigue, 116 (2018) 48–67.
  31. E. Maleki, G.H. Farrahi, Modelling of conventional and severe shot peening influence on properties of high carbon steel via artificial neural network, Int. J. Eng. Sci., 31 (2018) 382–393.
  32. P. Chaves, T. Kojiri, Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks, Adv. Water Resour., 30 (2007) 1329–1341.
  33. P. Juntunen, M. Liukkonen, M. Pelo, M.J. Lehtola, Y. Hiltunen, Modelling of Water Quality: An Application to a Water Treatment Process, Appl. Comput. Intell. Soft Comput., 2 (2012) 1–9.
  34. A. Rak, Water Turbidity Modelling During Water Treatment Processes Using Artificial Neural Networks, Int. J. Water Sci., 29 (2013) 1–10.
  35. M.J. Kennedy, A.H. Gandomiab, C.M. Millera, Coagulation modeling using artificial neural networks to predict both turbidity and DOM-PARAFAC component removal, J. Environ. Chem. Eng., 3 (2015) 2829–2838.
  36. M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence, Chemosphere, 200 (2018) 330–343.
  37. A. Jamali, A. Hajiloo, N. Nariman-zadeh, Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA), Expert Syst. Appl., 37 (2010) 401–413.
  38. L. Yang, H. Yang, H. Liu, GMDH-Based Semi-Supervised Feature Selection for Electricity Load Classification Forecasting, Sustainability, 10 (2018) 1–16.
  39. A.G. Ivakhnenko, J.A. Müller, Recent developments of selforganizing modeling in prediction and analysis of stock market, Microelectron. Reliab., 37 (1995) 1053–1072.
  40. A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE Trans. Syst. Man Cybern., 4 (1971) 364–378.
  41. H. Iba, T. Sato, A numerical approach to genetic programming for system identification, Evolut. Comput., 3 (1995) 417–452.
  42. N. Nariman-Zadeh, A. Darvizeh, G.R. Ahmad-Zadeh, Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and prediction of the explosive cutting process, Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 217 (2003) 779–790.
  43. N. Nariman Zadeh, A. Jamali, Pareto Genetic Design of GMDHtype Neural Networks for Nonlinear Systems, International Workshop on Inductive Modeling, Czech Technical University, Prague, Czech Republic, 2007, pp. 96–103.
  44. N. Nariman-Zadeh, A. Darvizeh, A. Jamali, A. Moeini, Evolutionary design of generalized polynomial neural networks for modeling and prediction of explosive forming process, J. Mater. Process. Technol., 164 (2005) 1561–1571.