References
- H.X. Du, F.S. Li, Z.J. Yu, C.H. Feng, W.H. Li, Nitrification and
denitrification in two-chamber microbial fuel cells for treatment
of wastewater containing high concentrations of ammonia
nitrogen, Environ. Technol., 37 (2016) 1232–1239.
- S.F. Kosari, B. Rezania, K.V. Lo, D.S. Mavinic, Operational
strategy for nitrogen removal from centrate in a two-stage
partial nitrification – anammox process, Environ. Technol., 35
(2014) 1110–1120.
- Y.Q. Yao, D.F. Lu, Z.M. Qi, S.H. Xia, Miniaturized optical system
for detection of ammonia nitrogen in water based on gas-phase
colorimetry, Anal. Lett., 45 (2012) 2176–2184.
- I.M. Valente, H.M. Oliveira, C.D. Vaz, R.M. Ramos,
Determination of ammonia nitrogen in solid and liquid highcomplex
matrices using one-step gas-diffusion microextraction
and fluorimetric detection, Talanta, 167 (2017) 747–753.
- H. Haimi, M. Mulas, F. Corona, R. Vahala, Data-derived softsensors
for biological wastewater treatment plants: an overview,
Environ. Modell. Software, 47 (2013) 88–107.
- H.G. Han, Y. Li, Y.N. Guo, J.F. Qiao, A soft computing method
to predict sludge volume index based on a recurrent selforganizing
neural network, Appl. Soft Comput., 38 (2016)
477–486.
- X.F. Yuan, Z.Q. Ge, Z.H. Song, Y.L. Wang, C.H. Yang, H.W.
Zhang, Soft sensor modeling of nonlinear industrial processes
based on weighted probabilistic projection regression, IEEE
Trans. Instrum. Meas., 66 (2017) 837–845.
- S. Yin, X.W. Li, H.J. Gao, O. Kaynak, Data-based techniques
focused on modern industry: an overview, IEEE Trans. Ind.
Electron., 62 (2015) 657–667.
- J.B. Zhang, Z.H. Deng, K.S. Choi, S.T. Wang, Data-driven elastic
fuzzy logic system modeling: constructing a concise system
with human-like inference mechanism, IEEE Trans. Fuzzy Syst.,
26 (2018) 2160–2173.
- J.F. Canete, R. Baratti, M. Mulas, A. Ruano, Soft-sensing
estimation of plant effluent concentrations in a biological
wastewater treatment plant using an optimal neural network,
Expert Syst. Appl., 63 (2016) 8–19.
- M.F. Nezhad, N. Mehrdadi, A. Torabian, S. Behboudian,
Artificial neural network modeling of the effluent quality
index for municipal wastewater treatment plants using quality
variables: south of Tehran wastewater treatment plant, J. Water
Supply Res. Technol. AQUA, 65 (2016) 18–27.
- M. Bagheri, S.A. Mirbagheri, Z. Bagheri, A.M. Kamarkhanie,
Modeling and optimization of activated sludge bulking for a
real wastewater treatment plant using hybrid artificial neural
networks-genetic algorithm approach, Process Saf. Environ.
Prot., 95 (2015) 12–25.
- D. Dovžan, V. Logar, I. Škrjanc, Implementation of an evolving
fuzzy model (eFuMo) in a monitoring system for a waste-water
treatment process, IEEE Trans. Fuzzy Syst., 23 (2015) 1761–1776.
- M.M. Ebadzadeh, A.S. Badr, IC-FNN: a novel fuzzy neural
network with interpretable intuitive and correlated-contours
fuzzy rules for function approximation, IEEE Trans. Fuzzy
Syst., 26 (2018) 1288–1302.
- J.J. Rubio, SOFMLS: online self-organizing fuzzy modified leastsquares
network, IEEE Trans. Fuzzy Syst., 17 (2009) 1296–1309.
- N. Wang, M.J. Er, X.Y. Meng, A fast and accurate online selforganizing
scheme for parsimonious fuzzy neural networks,
Neurocomputing, 72 (2009) 3818–3829.
- J.F. Qiao, W. Li, H.G. Han, Soft computing of biochemical
oxygen demand using an improved T–S fuzzy neural network,
Chin. J. Chem. Eng., 22 (2014) 1254–1259.
- C.F. Juang, C.D. Hsieh, A fuzzy system constructed by rule
generation and iterative linear SVR for antecedent and
consequent parameter optimization, IEEE Trans. Fuzzy Syst.,
20 (2012) 372–384.
- M.M. Ebadzadeh, A.S. Badr, CFNN: correlated fuzzy neural
network, Neurocomputing, 148 (2015) 430–444.
- M.Z. Huang, Y.W. Ma, J.Q. Wan, X.H. Chen, A sensor-software
based on a genetic algorithm-based neural fuzzy system for
modeling and simulating a wastewater treatment process,
Appl. Soft Comput., 27 (2015) 1–10.
- L. Teslic, B. Hartmann, O. Nelles, I. Škrjanc, Nonlinear
system identification by Gustafson–Kessel fuzzy clustering
and supervised local model network learning for the drug
absorption spectra process, IEEE Trans. Neural Networks
Learn. Syst., 22 (2011) 1941–1951.
- H. Malek, M.M. Ebadzadeh, M. Rahmati, Three new fuzzy
neural networks learning algorithms based on clustering,
training error and genetic algorithm, Appl. Intell., 37 (2012)
280–289.
- M. Seera, C.P. Lim, C.K. Loo, H. Singh, A modified fuzzy min–max neural network for data clustering and its application to
power quality monitoring, Appl. Soft Comput., 28 (2015) 19–29.
- J.J. Tang, F. Liu, W.H. Zhang, R.M. Ke, Y.J. Zou, Lane-changes
prediction based on adaptive fuzzy neural network, Expert
Syst. Appl., 91 (2018) 452–463.
- J.J. Tang, F. Liu, Y.J. Zou, W.B. Zhang, Y.H. Wang, An improved
fuzzy neural network for traffic speed prediction considering
periodic characteristic, IEEE Trans. Intell. Transp. Syst., 18
(2017) 2340–2350.
- J.J. Tang, Y.J. Zou, J. Ash, S. Zhang, F. Liu, Y.H. Wang, Travel
time estimation using freeway point detector data based on
evolving fuzzy neural inference system, PLoS One, 11 (2016)
e0147263.
- R.D. Zhang, J.L. Tao, A nonlinear fuzzy neural network
modeling approach using an improved genetic algorithm, IEEE
Trans. Ind. Electron., 65 (2018) 5882–5892.
- Y.Y. Lin, J.Y. Chang, C.T. Lin, Identification and prediction of
dynamic systems using an interactively recurrent self-evolving
fuzzy neural network, IEEE Trans. Neural Networks Learn
Syst., 24 (2013) 310–321.
- M. Prasad, C.T. Lin, D.L. Li, C.T. Hong, W.P. Ding, J.Y. Chang,
Soft-boosted self-constructing neural fuzzy inference network,
IEEE Trans. Syst. Man Cybern. Syst., 47 (2017) 584–588.
- S.Q. Wu, M.J. Er, Dynamic fuzzy neural networks-a novel
approach to function approximation, IEEE Trans. Syst. Man
Cybern. Part B Cybern., 30 (2000) 358–364.
- S.Q. Wu, M.J. Er, Y. Gao, A fast approach for automatic
generation of fuzzy rules by generalized dynamic fuzzy neural
networks, IEEE Trans. Fuzzy Syst., 9 (2001) 578–594.
- X.J. Ma, J. Yu, Q.L. Dong, A generalized dynamic fuzzy neural
network based on singular spectrum analysis optimized by
brain storm optimization for short-term wind speed forecasting,
Appl. Soft Comput., 54 (2017) 296–312.
- J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means
clustering algorithm, Comput. Geosci., 10 (1984) 191–203.
- D. Graves, W. Pedrycz, Kernel-based fuzzy clustering and fuzzy
clustering: a comparative experimental study, Fuzzy Sets Syst.,
161 (2010) 522–543.
- M.G. Gong, Y. Liang, J. Shi, W.P. Ma, J.J. Ma, Fuzzy c-means
clustering with local information and kernel metric for image
segmentation, IEEE Trans. Image Process., 22 (2013) 573–584.
- K.P. Lin, A novel evolutionary kernel intuitionistic fuzzy
c-means clustering algorithm, IEEE Trans. Fuzzy Syst., 22
(2014) 1074–1087.
- B.M. Wilamowski, H. Yu, Improved computation for
Levenberg–Marquardt training, IEEE Trans. Neural Networks
Learn Syst., 21 (2010) 930–937.
- H.G. Han, L.M. Ge, J.F. Qiao, An adaptive second order
fuzzy neural network for nonlinear system modeling,
Neurocomputing, 214 (2016) 837–847.
- Z. Wang, J.S. Chu, Y Song. Y.J. Cui, H. Zhang, X.Q. Zhao, Z.H.
Li, J.M. Yao, Influence of operating conditions on the efficiency
of domestic wastewater treatment in membrane bioreactors,
Desalination, 245 (2009) 73–81.
- F.J. Chang, Y.H. Tsai, P.A. Chen, A. Coynel, G. Vachaud,
Modeling water quality in an urban river using hydrological
factors–data driven approaches, J. Environ. Manage., 151 (2015)
87–96.
- E. Lee, S. Han, H. Kim, Development of software sensors for
determining total phosphorus and total nitrogen in waters, Int.
J. Environ. Res. Public Health, 10 (2013) 219–236.