References

  1. U. Cortés, M. Martínez, J. Comas, M. Sànchez-Marrè, I. Rodríguez-Roda, A conceptual model to facilitate knowledge sharing for bulking solving in wastewater treatment plant, AI Commun., 16 (2006) 279–289.
  2. M. Mauricio-Iglesias, J.M. Garrido, J.M. Lema, Operation of an innovative WWTP with environmental objectives, a modelbased analysis, IFAC-PapersOnLine, 49 (2016) 539–543.
  3. X. Flores-Alsina, J. Comas, I.R. Roda, M. Poch, K.V. Gernaey, U. Jeppsson, Evaluation of plant-wide WWTP control strategies including the effects of filamentous bulking sludge, Water Sci. Technol., 60 (2009) 2093–2103.
  4. A.M.P. Martins, J.J. Heijnen, M.C.M. van Loosdrecht, Bulking sludge in biological nutrient removal systems, Biotechnol. Bioeng., 86 (2004) 125–135.
  5. Y. Kim, W.O. Pipes, P.-G. Chung, Control of activated sludge bulking by operating clarifiers in a series, Water Sci. Technol., 38 (1998) 1–8.
  6. E. Kowalska, E. Paturej, M. Zielińska, Use of Lecane inermis for control of sludge bulking caused by the Haliscomenobacter genus, Desal. Wat. Treat., 57 (2016) 10916–10923.
  7. S.C. Oliveira, M. Sperling, Reliability analysis of wastewater treatment plants, Water Res., 42 (2008) 1182–1194.
  8. H.G. Han, J.F. Qiao, Hierarchical neural network modelling approach to predict Sludge Volume Index of wastewater treatment process, IEEE Trans. Control Systems Technol., 21 (2013) 2423–2431.
  9. H.G. Han, Y. Li, Y. Guo, J. Qiao, A soft computing method to predict sludge volume index based on a recurrent selforganizing neural network, Appl. Soft Comput., 38 (2016) 477–486.
  10. X.J. Flores-Alsina, J. Comas, I.R. Roda, K.V. Gernaey, Ch. Rosen, Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model, Water Res., 43 (2009) 4527–4538.
  11. J. Bayo, J.M. Angosto, J. Serrano-Aniorte, Evaluation of physicochemical parameters influencing bulking episodes in a municipal wastewater treatment plant, Water Pollution VIII: Model. Monit. Manage., 95 (2006) 531–542.
  12. E. Bezak-Mazur, R. Stoińska, B. Szeląg, Evaluation of the impact of operational parameters and particular filamentous bacteria on activated sludge volume index – a case study, Environ. Protect., 18 (2016) 487–498.
  13. B. Szeląg, P. Siwicki, in: B. Kaźmierczak, M. Kutyłowska, K. Piekarska, A. Trusz – Zdybek, E3S Web of Conferences 17, Application of the Selected Classification Models to the Analysis of the Settling Capacity of the Activated Sludge – Case Study, Boguszów-Gorce, 2017, pp. 1–7.
  14. R.W. Martin, E.R. Waits, Ch.T. Nietch, Empirically-based modeling and mapping to consider the co-occurrence of ecological receptors and stressors, Sci. Total Environ., 613–614 (2018) 1228–1239.
  15. A. Nielfa, R. Cano, M. Fdz-Polanco, Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge, Biotechnol. Rep., 5 (2015) 14–21.
  16. F. Harrell, Regression Modeling Strategies with Application to Linear Models, Logistic Regression and Survival Analysis. Springer Verlag, 2001.
  17. J. Lubos, T. Kaletova, M. Sedmakova, P. Balazova, A. Cervenanska, Comparison of service characteristics of two town’s WWTP, J. Ecol. Eng., 18 (2017) 61–67.
  18. M. Ahnert, C. Marx, P. Krebs, V. Kuehn, A black-box model for generation of site-specific WWTP influent quality data based on plant routine data, Water Sci. Technol., 74 (2016) 2978–2986.
  19. D. Rousseau, F. Verdanck, D. Moerman, R. Carrette, C. Thoeye, J. Meirlaen, P.A. Venrolleghem, Development of a risk assessment based technique for design/retroffing WWTP, Water Sci. Technol., 43 (2001) 287–294.
  20. B. Szeląg, J. Studziński, A data mining approach to the prediction of food-to-mass ratio and mixed liquor suspended solids, Pol. J. Environ. Stud., 26 (2017) 2231–2238.
  21. B. Szeląg, J. Gawdzik, J. Studziński, In: Z. Willimowska, L. Borzemski, J. Świątek, Advances in intelligent systems and computing 657, Sludge Volume Index (SVI) Modelling: Data Mining Approach, Szklarska – Poręba, 2017, pp. 325–335.
  22. B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge process modelling using selected machine learning techniques, Desal. Wat. Treat., 117 (2018) 78–87.
  23. G. Capizzi, G.L. Sciutto, P. Monforte, C. Napoli, Cascade feed forward neural network based model for air pollutants evaluation of single monitoring stations in urban areas, Int. J. Electron. Telecommun., 61 (2015) 327–332.
  24. S.G. Setti, R.N. Rao, Artificial neural network approach for prediction of stress–strain curve of near b titanium alloy, Rare Metal, 33 (2014) 249–257.
  25. M.S. Al-batah, M.S. Alkhasawneh, L.T. Tay, U.K. Ngah, H.H. Lateh, N.A.M. Isa, Landslide occurrence prediction using trainable cascade forward network and multilayer perceptron, Math. Probl. Eng., 2015 (2015) 1–9.
  26. L. Rutkowski, Artificial Intelligence Methods and Techniques: Computational Intelligence, PWN, 2006 (in Polish).
  27. X. Wei, A. Kusiak, H.R. Sadat, Prediction of influent flow rate: data-mining approach, J. Energy Eng., 19 (2012) 118–123.
  28. G. Kaczor, Influence of air temperature on sewage temperature in sewerage system and in biological reactor, Infrastruct. Ecol. Rural Areas, 3 (2008) 129–137.
  29. J. Bayo, J. López-Castellanos, Principal factor and hierarchical cluster analyses for the performance assessment of an urban wastewater treatment plant in the Southeast of Spain, Chemosphere, 155 (2016) 152–162.
  30. I. Lou, Y. Zhao, Sludge bulking prediction using principle component regression and artificial neural network, Math. Probl. Eng., 2012 (2012) 1–17.
  31. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder-Mead Simplex method in low dimensions, SIAM J. Optim., 9 (1998) 112–147.
  32. L. Belanche, J. Valdes, J. Comas, I. Rodriguez-Roda, M. Poch, Prediction of the bulking phenomenon in wastewater treatment plants, Artif. Intellig. Eng., 14 (2000) 307–317.
  33. A. Kusiak, A. Verma, X. Wei, A data–mining approach to predict influent quality, Environ. Monit. Assess., 185 (2013) 2197–2210.
  34. A. Verma, X. Wei, A. Kusiak, Predicting the total suspended solids in wastewater: a data-mining approach, Eng. Appl. Artif. Intell., 26 (2013) 1366–1372.
  35. H.Z. Abyaneh, Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters, J. Environ. Health Sci., 12 (2014) 1–8.
  36. E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
  37. K. Barbusiński, H. Kościelniak, Influence of substrate loading intensity on floc size in activated sludge process, Water Res., 29 (1995) 1703–1710.