References
- U. Cortés, M. Martínez, J. Comas, M. Sànchez-Marrè, I.
Rodríguez-Roda, A conceptual model to facilitate knowledge
sharing for bulking solving in wastewater treatment plant, AI
Commun., 16 (2006) 279–289.
- M. Mauricio-Iglesias, J.M. Garrido, J.M. Lema, Operation of
an innovative WWTP with environmental objectives, a modelbased
analysis, IFAC-PapersOnLine, 49 (2016) 539–543.
- X. Flores-Alsina, J. Comas, I.R. Roda, M. Poch, K.V. Gernaey,
U. Jeppsson, Evaluation of plant-wide WWTP control strategies
including the effects of filamentous bulking sludge, Water Sci.
Technol., 60 (2009) 2093–2103.
- A.M.P. Martins, J.J. Heijnen, M.C.M. van Loosdrecht, Bulking
sludge in biological nutrient removal systems, Biotechnol.
Bioeng., 86 (2004) 125–135.
- Y. Kim, W.O. Pipes, P.-G. Chung, Control of activated sludge
bulking by operating clarifiers in a series, Water Sci. Technol.,
38 (1998) 1–8.
- E. Kowalska, E. Paturej, M. Zielińska, Use of Lecane inermis for control of sludge bulking caused by the Haliscomenobacter
genus, Desal. Wat. Treat., 57 (2016) 10916–10923.
- S.C. Oliveira, M. Sperling, Reliability analysis of wastewater
treatment plants, Water Res., 42 (2008) 1182–1194.
- H.G. Han, J.F. Qiao, Hierarchical neural network modelling
approach to predict Sludge Volume Index of wastewater
treatment process, IEEE Trans. Control Systems Technol., 21
(2013) 2423–2431.
- H.G. Han, Y. Li, Y. Guo, J. Qiao, A soft computing method
to predict sludge volume index based on a recurrent selforganizing
neural network, Appl. Soft Comput., 38 (2016)
477–486.
- X.J. Flores-Alsina, J. Comas, I.R. Roda, K.V. Gernaey, Ch. Rosen,
Including the effects of filamentous bulking sludge during
the simulation of wastewater treatment plants using a risk
assessment model, Water Res., 43 (2009) 4527–4538.
- J. Bayo, J.M. Angosto, J. Serrano-Aniorte, Evaluation of
physicochemical parameters influencing bulking episodes in
a municipal wastewater treatment plant, Water Pollution VIII:
Model. Monit. Manage., 95 (2006) 531–542.
- E. Bezak-Mazur, R. Stoińska, B. Szeląg, Evaluation of the impact
of operational parameters and particular filamentous bacteria
on activated sludge volume index – a case study, Environ.
Protect., 18 (2016) 487–498.
- B. Szeląg, P. Siwicki, in: B. Kaźmierczak, M. Kutyłowska,
K. Piekarska, A. Trusz – Zdybek, E3S Web of Conferences
17, Application of the Selected Classification Models to the
Analysis of the Settling Capacity of the Activated Sludge – Case
Study, Boguszów-Gorce, 2017, pp. 1–7.
- R.W. Martin, E.R. Waits, Ch.T. Nietch, Empirically-based
modeling and mapping to consider the co-occurrence of
ecological receptors and stressors, Sci. Total Environ., 613–614
(2018) 1228–1239.
- A. Nielfa, R. Cano, M. Fdz-Polanco, Theoretical methane
production generated by the co-digestion of organic fraction
municipal solid waste and biological sludge, Biotechnol. Rep., 5
(2015) 14–21.
- F. Harrell, Regression Modeling Strategies with Application
to Linear Models, Logistic Regression and Survival Analysis.
Springer Verlag, 2001.
- J. Lubos, T. Kaletova, M. Sedmakova, P. Balazova, A.
Cervenanska, Comparison of service characteristics of two
town’s WWTP, J. Ecol. Eng., 18 (2017) 61–67.
- M. Ahnert, C. Marx, P. Krebs, V. Kuehn, A black-box model for
generation of site-specific WWTP influent quality data based on
plant routine data, Water Sci. Technol., 74 (2016) 2978–2986.
- D. Rousseau, F. Verdanck, D. Moerman, R. Carrette, C.
Thoeye, J. Meirlaen, P.A. Venrolleghem, Development of a
risk assessment based technique for design/retroffing WWTP,
Water Sci. Technol., 43 (2001) 287–294.
- B. Szeląg, J. Studziński, A data mining approach to the
prediction of food-to-mass ratio and mixed liquor suspended
solids, Pol. J. Environ. Stud., 26 (2017) 2231–2238.
- B. Szeląg, J. Gawdzik, J. Studziński, In: Z. Willimowska, L.
Borzemski, J. Świątek, Advances in intelligent systems and
computing 657, Sludge Volume Index (SVI) Modelling: Data
Mining Approach, Szklarska – Poręba, 2017, pp. 325–335.
- B. Szeląg, K. Barbusiński, J. Studziński, Activated sludge
process modelling using selected machine learning techniques,
Desal. Wat. Treat., 117 (2018) 78–87.
- G. Capizzi, G.L. Sciutto, P. Monforte, C. Napoli, Cascade
feed forward neural network based model for air pollutants
evaluation of single monitoring stations in urban areas, Int. J.
Electron. Telecommun., 61 (2015) 327–332.
- S.G. Setti, R.N. Rao, Artificial neural network approach for
prediction of stress–strain curve of near b titanium alloy, Rare
Metal, 33 (2014) 249–257.
- M.S. Al-batah, M.S. Alkhasawneh, L.T. Tay, U.K. Ngah, H.H.
Lateh, N.A.M. Isa, Landslide occurrence prediction using
trainable cascade forward network and multilayer perceptron,
Math. Probl. Eng., 2015 (2015) 1–9.
- L. Rutkowski, Artificial Intelligence Methods and Techniques:
Computational Intelligence, PWN, 2006 (in Polish).
- X. Wei, A. Kusiak, H.R. Sadat, Prediction of influent flow rate:
data-mining approach, J. Energy Eng., 19 (2012) 118–123.
- G. Kaczor, Influence of air temperature on sewage temperature
in sewerage system and in biological reactor, Infrastruct. Ecol.
Rural Areas, 3 (2008) 129–137.
- J. Bayo, J. López-Castellanos, Principal factor and hierarchical
cluster analyses for the performance assessment of an
urban wastewater treatment plant in the Southeast of Spain,
Chemosphere, 155 (2016) 152–162.
- I. Lou, Y. Zhao, Sludge bulking prediction using principle
component regression and artificial neural network, Math.
Probl. Eng., 2012 (2012) 1–17.
- J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright,
Convergence properties of the Nelder-Mead Simplex method
in low dimensions, SIAM J. Optim., 9 (1998) 112–147.
- L. Belanche, J. Valdes, J. Comas, I. Rodriguez-Roda, M. Poch,
Prediction of the bulking phenomenon in wastewater treatment
plants, Artif. Intellig. Eng., 14 (2000) 307–317.
- A. Kusiak, A. Verma, X. Wei, A data–mining approach to predict
influent quality, Environ. Monit. Assess., 185 (2013) 2197–2210.
- A. Verma, X. Wei, A. Kusiak, Predicting the total suspended
solids in wastewater: a data-mining approach, Eng. Appl. Artif.
Intell., 26 (2013) 1366–1372.
- H.Z. Abyaneh, Evaluation of multivariate linear regression
and artificial neural networks in prediction of water quality
parameters, J. Environ. Health Sci., 12 (2014) 1–8.
- E. Dogan, A. Ates, E.C. Yilmaz, B. Eren, Application of artificial
neural networks to estimate wastewater treatment plant inlet
biochemical oxygen demand, Environ. Prog., 27 (2008) 439–446.
- K. Barbusiński, H. Kościelniak, Influence of substrate loading
intensity on floc size in activated sludge process, Water Res., 29
(1995) 1703–1710.