References
- Q.L. Zhang, X.Y. Guo, X.D. Cao, D.T. Wang, J. Wei, Facile
preparation of a Ti/α-PbO2/β-PbO2 electrode for the
electrochemical degradation of 2-chlorophenol, Chin. J. Catal.,
36 (2015) 975–981.
- Q. Shi, H. Wang, S.L. Liu, L. Pang, Z.Y. Bian, Electrocatalytic
reduction-oxidation of chlorinated phenols using a
nanostructured Pd-Fe modified graphene catalyst, Electrochim.
Acta, 178 (2015) 92–100.
- M. Czaplicka, Sources and transformations of chlorophenols in
the natural environment. Sci. Total Environ., 322 (2004) 21–39.
- M.Á. Arellano-González, I. González, A.C. Texier,
Mineralization of 2-chlorophenol by sequential electrochemical
reductive dechlorination and biological processes, J. Hazard.
Mater., 314 (2016) 181–187.
- B. Shah, R. Tailor, A. Shah, Sorptive sequestration of
2-chlorophenol by zeolitic materials derived from bagasse fly
ash, J. Chem. Technol. Biotechnol., 86 (2011) 1265–1275.
- S.H. Zhang, J.P. You, C. Kennes, Z.W. Cheng, J.X. Ye, D.Z. Chen,
J.M. Chen, L.D. Wang, Current advances of VOCs degradation
by bioelectrochemical systems: a review, Chem. Eng. J., 334
(2018) 2625–2637.
- G. Li, Q.Y. Xu, X.Y. Jin, R. Li, R. Dharmarajan, Z.L. Chen, Enhanced
adsorption and Fenton oxidation of 2,4-dichlorophenol in
aqueous solution using organobentonite supported nZVI, Sep.
Purif. Technol., 197 (2018) 401–406.
- H. Arfaeinia, H. Sharafi, M. Moradi, M. Ehsanifar, S.E.
Hashemi, Efficient degradation of 4-chloro-2-nitrophenol using
photocatalytic ozonation with nano-zinc oxide impregnated
granular activated carbon (ZnO–GAC), Desal. Wat. Treat., 93
(2017) 145–151.
- X.Y. Duan, C.M. Zhao, W. Liu, X.S. Zhao, L.M. Chang, Fabrication
of a novel PbO2 electrode with a graphene nanosheet interlayer
for electrochemical oxidation of 2-chlorophenol, Electrochim.
Acta, 240 (2017) 424–436.
- J.F. Niu, D. Maharana, J.L. Xu, Z. Chai, Y.P. Bao, A high activity
of Ti/SnO2-Sb electrode in the electrochemical degradation of
2,4-dichlorophenol in aqueous solution, J. Environ. Sci., 25
(2013) 1424–1430.
- M. Marcu, C. Pirvu, A. Banu, E. Vulpasu, Effect of chlorine
substitute on phenols electrooxidation studied by cyclic
voltammetry, Revista Chimie, 59 (2008) 867–870.
- J.H. Yoon, Y.B. Shim, B.S. Lee, S.Y. Choi, M.S. Won,
Electrochemical degradation of phenol and 2-chlorophenol
using Pt/Ti and boron-doped diamond electrodes, Bull. Korean
Chem. Soc., 33 (2012) 2274–2278.
- M. Banhidi, pH and ORP. Metal Finishing, 93 (1995) 593–599.
- A.J.H. Janssen, S. Meijer, J. Bontsema, G. Lettinga, Application of
the redox potential for controling a sulfide oxidizing bioreactor,
Biotechnol. Bioeng., 60 (1998) 147–155.
- B. Zhang, C.H. Yang, H.Q. Zhu, Y.G. Li, W.H. Gui, Evaluation
strategy for the control of the copper removal process based on
oxidation-reduction potential, Chem. Eng. J., 284 (2016) 294–304.
- C.N. Chang, J.G. Lin, A.C. Chao, C.S. Liu, Modified Nernst
model for on-line control of the chemical oxidation decoloring
process, Water Sci. Technol., 34 (1996) 151–157.
- M. Langone, R. Ferrentino, M. Cadonna, G. Andreottola,
Stoichiometric evaluation of partial nitritation, anammox and
denitrification processes in a sequencing batch reactor and
interpretation of online monitoring parameters, Chemosphere,
164 (2016) 488–498.
- M.V. Ruano, J. Ribes, A. Seco, J. Ferrer, An advanced control
strategy for biological nutrient removal in continuous systems
based on pH and ORP sensors, Chem. Eng. J., 183 (2012)
212–221.
- P.T. Martín de la Vega, E. Martínez de Salazar, M.A. Jaramillo,
J. Cros, New contributions to the ORP and DO time profile
characterization to improve biological nutrient removal,
Bioresour. Technol., 114 (2012) 160–167.
- J.X. Song, D. An, N.Q. Ren, Y.M. Zhang, Y. Chen, Effects of
pH and ORP on microbial ecology and kinetics for hydrogen
production in continuously dark fermentation, Bioresour.
Technol., 102 (2011) 10875–10880.
- C.N. Chang, Y.S. Ma, G.C. Fang, A.C. Chao, M.C. Tsai, H.F. Sung,
Decolorizing of lignin wastewater using the photochemical UV/TiO2 process, Chemosphere, 56 (2004) 1011–1017.
- R.F. Yu, H.W. Chen, W.P. Cheng, Y.J. Lin, C.L. Huang,
Monitoring of ORP, pH and DO in heterogeneous Fenton
oxidation using nZVI as a catalyst for the treatment of azodye
textile wastewater, J. Taiwan Inst. Chem. Eng., 45 (2014)
947–954.
- H.F. Wu, S.H. Wang, Impacts of operating parameters on
oxidation-reduction potential and pretreatment efficacy in the
pretreatment of printing and dyeing wastewater by Fenton
process, J. Hazard. Mater., 243 (2012) 86–94.
- C.N. Cheng, Y.S. Ma, C.W. Lo, Application of oxidationreduction
potential as a controlling parameter in waste activated
sludge hydrolysis, Chem. Eng. J., 90 (2002) 273–281.
- Y.O. Kim, H.U. Nam, Y.R. Park, J.H. Lee, T.J. Park, T.H. Lee,
Fenton oxidation process control using oxidation-reduction
potential measurement for pigment wastewater treatment,
Korean J. Chem. Eng., 21 (2004) 801–805.
- Z.R. Sun, X.F. Wei, Y.B. Han, S. Tong, X. Hu, Complete
dechlorination of 2,4-dichlorophenol in aqueous solution
on palladium/polymeric pyrrole-cetyl trimethyl ammonium
bromide/foam-nickel composite electrode, J. Hazard. Mater.,
244–245 (2013) 287–294.
- L.L. Mcferson, Understanding ORP’s role in the disinfection
process, Water Eng. Manage., 140 (1993) 29–31.
- Y. Wang, Z.Y. Shen, X.C. Chen, Effects of experimental
parameters on 2,4-dichlorphenol degradation over, J. Hazard.
Mater., 178 (2010) 867–874.
- S. Kim, S.K. Choi, B.Y. Yoon, S.K. Lim, H. Park, Effects of
electrolyte on the electrocatalytic activities of RuO2/Ti and
Sb-SnO2/Ti anodes for water treatment, Appl. Catal., B, 97
(2010) 135–141.