References

  1. Q.L. Zhang, X.Y. Guo, X.D. Cao, D.T. Wang, J. Wei, Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol, Chin. J. Catal., 36 (2015) 975–981.
  2. Q. Shi, H. Wang, S.L. Liu, L. Pang, Z.Y. Bian, Electrocatalytic reduction-oxidation of chlorinated phenols using a nanostructured Pd-Fe modified graphene catalyst, Electrochim. Acta, 178 (2015) 92–100.
  3. M. Czaplicka, Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ., 322 (2004) 21–39.
  4. M.Á. Arellano-González, I. González, A.C. Texier, Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes, J. Hazard. Mater., 314 (2016) 181–187.
  5. B. Shah, R. Tailor, A. Shah, Sorptive sequestration of 2-chlorophenol by zeolitic materials derived from bagasse fly ash, J. Chem. Technol. Biotechnol., 86 (2011) 1265–1275.
  6. S.H. Zhang, J.P. You, C. Kennes, Z.W. Cheng, J.X. Ye, D.Z. Chen, J.M. Chen, L.D. Wang, Current advances of VOCs degradation by bioelectrochemical systems: a review, Chem. Eng. J., 334 (2018) 2625–2637.
  7. G. Li, Q.Y. Xu, X.Y. Jin, R. Li, R. Dharmarajan, Z.L. Chen, Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI, Sep. Purif. Technol., 197 (2018) 401–406.
  8. H. Arfaeinia, H. Sharafi, M. Moradi, M. Ehsanifar, S.E. Hashemi, Efficient degradation of 4-chloro-2-nitrophenol using photocatalytic ozonation with nano-zinc oxide impregnated granular activated carbon (ZnO–GAC), Desal. Wat. Treat., 93 (2017) 145–151.
  9. X.Y. Duan, C.M. Zhao, W. Liu, X.S. Zhao, L.M. Chang, Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol, Electrochim. Acta, 240 (2017) 424–436.
  10. J.F. Niu, D. Maharana, J.L. Xu, Z. Chai, Y.P. Bao, A high activity of Ti/SnO2-Sb electrode in the electrochemical degradation of 2,4-dichlorophenol in aqueous solution, J. Environ. Sci., 25 (2013) 1424–1430.
  11. M. Marcu, C. Pirvu, A. Banu, E. Vulpasu, Effect of chlorine substitute on phenols electrooxidation studied by cyclic voltammetry, Revista Chimie, 59 (2008) 867–870.
  12. J.H. Yoon, Y.B. Shim, B.S. Lee, S.Y. Choi, M.S. Won, Electrochemical degradation of phenol and 2-chlorophenol using Pt/Ti and boron-doped diamond electrodes, Bull. Korean Chem. Soc., 33 (2012) 2274–2278.
  13. M. Banhidi, pH and ORP. Metal Finishing, 93 (1995) 593–599.
  14. A.J.H. Janssen, S. Meijer, J. Bontsema, G. Lettinga, Application of the redox potential for controling a sulfide oxidizing bioreactor, Biotechnol. Bioeng., 60 (1998) 147–155.
  15. B. Zhang, C.H. Yang, H.Q. Zhu, Y.G. Li, W.H. Gui, Evaluation strategy for the control of the copper removal process based on oxidation-reduction potential, Chem. Eng. J., 284 (2016) 294–304.
  16. C.N. Chang, J.G. Lin, A.C. Chao, C.S. Liu, Modified Nernst model for on-line control of the chemical oxidation decoloring process, Water Sci. Technol., 34 (1996) 151–157.
  17. M. Langone, R. Ferrentino, M. Cadonna, G. Andreottola, Stoichiometric evaluation of partial nitritation, anammox and denitrification processes in a sequencing batch reactor and interpretation of online monitoring parameters, Chemosphere, 164 (2016) 488–498.
  18. M.V. Ruano, J. Ribes, A. Seco, J. Ferrer, An advanced control strategy for biological nutrient removal in continuous systems based on pH and ORP sensors, Chem. Eng. J., 183 (2012) 212–221.
  19. P.T. Martín de la Vega, E. Martínez de Salazar, M.A. Jaramillo, J. Cros, New contributions to the ORP and DO time profile characterization to improve biological nutrient removal, Bioresour. Technol., 114 (2012) 160–167.
  20. J.X. Song, D. An, N.Q. Ren, Y.M. Zhang, Y. Chen, Effects of pH and ORP on microbial ecology and kinetics for hydrogen production in continuously dark fermentation, Bioresour. Technol., 102 (2011) 10875–10880.
  21. C.N. Chang, Y.S. Ma, G.C. Fang, A.C. Chao, M.C. Tsai, H.F. Sung, Decolorizing of lignin wastewater using the photochemical UV/TiO2 process, Chemosphere, 56 (2004) 1011–1017.
  22. R.F. Yu, H.W. Chen, W.P. Cheng, Y.J. Lin, C.L. Huang, Monitoring of ORP, pH and DO in heterogeneous Fenton oxidation using nZVI as a catalyst for the treatment of azodye textile wastewater, J. Taiwan Inst. Chem. Eng., 45 (2014) 947–954.
  23. H.F. Wu, S.H. Wang, Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process, J. Hazard. Mater., 243 (2012) 86–94.
  24. C.N. Cheng, Y.S. Ma, C.W. Lo, Application of oxidationreduction potential as a controlling parameter in waste activated sludge hydrolysis, Chem. Eng. J., 90 (2002) 273–281.
  25. Y.O. Kim, H.U. Nam, Y.R. Park, J.H. Lee, T.J. Park, T.H. Lee, Fenton oxidation process control using oxidation-reduction potential measurement for pigment wastewater treatment, Korean J. Chem. Eng., 21 (2004) 801–805.
  26. Z.R. Sun, X.F. Wei, Y.B. Han, S. Tong, X. Hu, Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode, J. Hazard. Mater., 244–245 (2013) 287–294.
  27. L.L. Mcferson, Understanding ORP’s role in the disinfection process, Water Eng. Manage., 140 (1993) 29–31.
  28. Y. Wang, Z.Y. Shen, X.C. Chen, Effects of experimental parameters on 2,4-dichlorphenol degradation over, J. Hazard. Mater., 178 (2010) 867–874.
  29. S. Kim, S.K. Choi, B.Y. Yoon, S.K. Lim, H. Park, Effects of electrolyte on the electrocatalytic activities of RuO2/Ti and Sb-SnO2/Ti anodes for water treatment, Appl. Catal., B, 97 (2010) 135–141.