References
- M.L. Marin, L. Santos-Juanes, A. Arques, A.M. Amat, M.A.
Miranda, Organic photocatalysts for the oxidation of pollutants
and model compounds, Chem. Rev., 112 (2012) 1710–1750.
- H. Djelal, C. Cornée, R. Tartivel, O. Lavastre, A. Abdeltif, The
use of HPTLC and direct analysis in real time-of-flight mass
spectrometry (DART-TOF-MS) for rapid analysis of degradation
by oxidation and sonication of an azo dye, Arab. J. Chem., 10
(2017) S1619–S1628.
- D.-J. Lee, Y.-L. Cheng, R.-J. Wong, X.-D. Wang, Adsorption
removal of natural organic matters in waters using biochar,
Bioresour. Technol., 260 (2018) 413–416.
- J. Zheng, Z. Wang, J. Ma, S. Xu, Z. Wu, Development of an
electrochemical ceramic membrane filtration system for efficient
contaminant removal from waters, Environ. Sci. Technol., 52
(2018) 4117–4126.
- A. Shibata, R. Kodaka, T. Fujisawa, T. Katagi, Degradation of
flumioxazin in illuminated water-sediment systems, J. Agric.
Food Chem., 59 (2011) 11186–11195.
- C. Zhang, L. Wu, D. Cai, C. Zhang, N. Wang, J. Zhang, Z. Wu,
Adsorption of polycyclic aromatic hydrocarbons (fluoranthene
and anthracenemethanol) by functional graphene oxide and
removal by pH and temperature-sensitive coagulation, ACS
Appl. Mater. Interfaces, 5 (2013) 4783–4790.
- C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Recent
Advancement of coagulation–flocculation and its application
in wastewater treatment, Ind. Eng. Chem. Res., 55 (2016)
4363–4389.
- Y.H. Chuang, S. Chen, C.J. Chinn, W.A. Mitch, Comparing the
UV/monochloramine and UV/free chlorine advanced oxidation
processes (AOPs) to the UV/hydrogen peroxide AOP under
scenarios relevant to potable reuse, Environ. Sci. Technol., 51
(2017) 13859–13868.
- J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Selectivity
enhancement in heterogeneous photocatalytic transformations,
Chem. Rev., 117 (2017) 1445–1514.
- A.T. Montoya, E.G. Gillan, Enhanced photocatalytic hydrogen
evolution from transition-metal surface-modified TiO2, ACS
Omega, 3 (2018) 2947–2955.
- D. Ma, A. Liu, C. Lu, C. Chen, Photocatalytic dehydrogenation
of primary alcohols: selectivity goes against adsorptivity, ACS
Omega, 2 (2017) 4161–4172.
- G.P. Awasthi, S.P. Adhikari, S. Ko, H.J. Kim, C.H. Park, C.S.
Kim, Facile synthesis of ZnO flowers modified graphene like
MoS2 sheets for enhanced visible-light-driven photocatalytic
activity and antibacterial properties, J. Alloys Comp., 682 (2016)
208–215.
- E. Butanovs, A. Kuzmin, J. Butikova, S. Vlassov, B. Polyakov,
Synthesis and characterization of ZnO/ZnS/MoS2 core-shell
nanowires, J. Crystal Growth, 459 (2017) 100–104.
- S. Lan, L. Liu, R. Li, Z. Leng, S. Gan, Hierarchical hollow
structure ZnO: synthesis, characterization, and highly efficient
adsorption/photocatalysis toward Congo Red, Ind. Eng. Chem.
Res., 53 (2014) 3131–3139.
- W. Wu, J. Changzhong, V.A. Roy, Recent progress in magnetic
iron oxide-semiconductor composite nanomaterials as
promising photocatalysts, Nanoscale, 7 (2015) 38–58.
- H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, Jr., S.T.
Pantelides, K.I. Bolotin, Bandgap engineering of strained
monolayer and bilayer MoS2, Nano Lett., 13 (2013) 3626–3630.
- G. Swain, S. Sultana, B. Naik, K. Parida, Coupling of crumpledtype
novel MoS2 with CeO2 nanoparticles: a noble-metal-free
p–n heterojunction composite for visible light photocatalytic H2
production, ACS Omega, 2 (2017) 3745–3753.
- C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Norskov, X.
Zheng, F. Abild-Pedersen, Electrochemical generation of sulfur
vacancies in the basal plane of MoS2 for hydrogen evolution,
Nat. Commun., 8 (2017) 1–8.
- H. Huang, L. Chen, C. Liu, X. Liu, S. Fang, W. Liu, Y. Liu,
Hierarchically nanostructured MoS2 with rich in-plane edges as
a high-performance electrocatalyst for the hydrogen evolution
reaction, J. Mater. Chem. A, 4 (2016) 14577–14585.
- X.L. Yin, L.L. Li, W.J. Jiang, Y. Zhang, X. Zhang, L.J. Wan, J.S.
Hu, MoS2/CdS Nanosheets-on-nanorod heterostructure for
highly efficient photocatalytic H2 generation under visible light
irradiation, ACS Appl. Mater. Interfaces, 8 (2016) 15258–15266.
- Y. Li, H. Wang, S. Peng, Tunable photodeposition of MoS2 onto
a composite of reduced graphene oxide and CdS for synergic
photocatalytic hydrogen generation, J. Phys. Chem. C, 118
(2014) 19842–19848.
- Q. Li, N. Zhang, Y. Yang, G. Wang, D.H. Ng, High efficiency
photocatalysis for pollutant degradation with MoS2/C3N4
heterostructures, Langmuir, 30 (2014) 8965–8972.
- N. Tian, Z. Li, D. Xu, Y. Li, W. Peng, G. Zhang, F. Zhang, X. Fan,
Utilization of MoS2 nanosheets to enhance the photocatalytic
activity of ZnO for the aerobic oxidation of benzyl halides
under visible light, Ind. Eng. Chem. Res., 55 (2016) 8726–8732.
- Y. Xue, W. Cai, S. Zheng, W. Yan, J. Hu, Z. Sun, Y. Zhang, W.
Jin, W-doped MoS2 nanosheets as a highly-efficient catalyst for
hydrogen peroxide electroreduction in alkaline media, Catal.
Sci. Technol., 7 (2017) 5733–5740.
- M.D. Xie, C.G. Tan, P. Zhou, J.G. Lin, L.Z. Sun, Ferrimagnetic
half-metallic properties of Cr/Fe δ doped MoS2 monolayer, RSC
Adv., 7 (2017) 20116–20122.
- E.Z. Xu, H.M. Liu, K. Park, Z. Li, Y. Losovyj, M. Starr, M.
Werbianskyj, H.A. Fertig, S.X. Zhang, p-Type transition-metal
doping of large-area MoS2 thin films grown by chemical vapor
deposition, Nanoscale, 9 (2017) 3576–3584.
- X. Liu, L. Li, Y. Wei, Y. Zheng, Q. Xiao, B. Feng, Facile synthesis
of boron- and nitride-doped MoS2 nanosheets as fluorescent
probes for the ultrafast, sensitive, and label-free detection of
Hg2+, Analyst, 140 (2015) 4654–4661.
- K.V. Baiju, C.P. Sibu, K. Rajesh, P.K. Pillai, P. Mukundan, K.G.K.
Warrier, W. Wunderlich, An aqueous sol–gel route to synthesize
nanosized lanthana-doped titania having an increased anatase
phase stability for photocatalytic application, Mater. Chem.
Phys., 90 (2005) 123–127.
- X. Sun, C. Li, L. Ruan, Z. Peng, J. Zhang, J. Zhao, Y. Li,
Ce-doped SiO2@TiO2 nanocomposite as an effective visible light
photocatalyst, J. Alloys Comp., 585 (2014) 800–804.
- J.W. Shi, J.T. Zheng, P. Wu, Preparation, characterization and
photocatalytic activities of holmium-doped titanium dioxide
nanoparticles, J. Hazard. Mater, 161 (2009) 416–422.
- X.S. Nguyen, G. Zhang, X. Yang, Mesocrystalline Zn-doped
Fe3O4 hollow submicrospheres: formation mechanism and
enhanced photo-Fenton catalytic performance, ACS Appl.
Mater. Interfaces, 9 (2017) 8900–8909.
- S. Guo, G. Zhang, J.C. Yu, Enhanced photo-Fenton degradation
of rhodamine B using graphene oxide-amorphous FePO4 as
effective and stable heterogeneous catalyst, J. Colloid Interface
Sci., 448 (2015) 460–466.
- C. Xiao, J. Li, G. Zhang, Synthesis of stable burger-like α-Fe2O3
catalysts: formation mechanism and excellent photo-Fenton
catalytic performance, J. Cleaner Prod., 180 (2018) 550–559.
- W. Li, Y. Tian, P. Li, B. Zhang, H. Zhang, W. Geng, Q. Zhang,
Synthesis of rattle-type magnetic mesoporous Fe3O4@mSiO2@BiOBr hierarchical photocatalyst and investigation of its
photoactivity in the degradation of methylene blue, RSC Adv.,
5 (2015) 48050–48059.
- P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like N-doped MoS2 for
photocatalytic degradation of RhB by visible light irradiation,
Nanotechnology, 27 (2016) 1–8.
- Z.J. Yu, M.R. Kumar, Y. Chu, H.X. Hao, Q.Y. Wu, H.D. Xie,
Photocatalytic decomposition of RhB by newly designed and
highly effective CF@ZnO/CdS hierarchical heterostructures,
ACS Sustain. Chem. Eng., 6 (2017) 155–164.
- J. Zhang, L. Huang, Z. Lu, Z. Jin, X. Wang, G. Xu, E. Zhang, H.
Wang, Z. Kong, J. Xi, Z. Ji, Crystal face regulating MoS2/TiO2
(001) heterostructure for high photocatalytic activity, J. Alloys
Comp., 688 (2016) 840–848.
- X. Wang, M. Hong, F. Zhang, Z. Zhuang, Y. Yu, Recyclable
nanoscale zero valent iron doped g-C3N4 for efficient
photocatalysis of RhB and Cr(VI) driven by visible light, ACS
Sustain. Chem. Eng., 4 (2016) 4055–4063.
- K. Wang, G. Zhang, J. Li, Y. Li, X. Wu, 0D/2D Z-scheme
heterojunctions of bismuth tantalate quantum dots/ultrathin
g-C3N4 nanosheets for highly efficient visible light photocatalytic
degradation of antibiotics, ACS Appl. Mater. Interfaces, 9 (2017)
43704–43715.
- Z. Wang, B. Mi, Environmental applications of 2D molybdenum
disulfide (MoS2) nanosheets, Environ. Sci. Technol., 51 (2017)
8229–8244.