References
- R.L. Hao, Y. Zhao, B. Yuan, S.H. Zhou, S. Yang, Establishment
of a novel advanced oxidation process for economical and
effective removal of SO2 and NO, J. Hazard. Mater., 318 (2016)
224–232.
- B. Shen, Y. Han, L. Price, H. Lu, M. Liu, Techno-economic
evaluation of strategies for addressing energy and
environmental challenges of industrial boilers in China, Energy,
118 (2017) 526–533.
- G. Cheng, C.X. Zhang, Desulfurization and Denitrification
technologies of coal-fired flue gas, Pol. J. Environ. Stud., 27
(2018) 481–489.
- R.L. Hao, S. Yang, B. Yuan, Y. Zhao, Simultaneous desulfurization
and denitrification through an integrative process utilizing
NaClO2/Na2S2O8, Fuel Process. Technol., 159 (2017) 145–152.
- J. Wang, W.Q. Zhong, Simultaneous desulfurization and
denitrification of sintering flue gas via composite absorbent,
Chin. J. Chem. Eng., 24 (2016) 1104–1111.
- R. Del Valle-Zermeño, M. Niubó, J. Formosa, M. Guembe, J.A.
Aparicio, J.M. Chimenos, Synergistic effect of the parameters
affecting wet flue gas desulfurization using magnesium oxides
by-products, Chem. Eng. J., 262 (2015) 268–277.
- L.Y. Yan, X.F. Lu, Q. Guo, Q.H. Wang, X.Y. Ji, Research on the
thermal decomposition and kinetics of byproducts from MgO
wet flue gas desulfurization, Adv. Powder Technol., 25 (2014)
1709–1714.
- Z. Shen, X. Chen, M. Tong, S. Guo, M. Ni, J. Lu, Studies on
magnesium-based wet flue gas desulfurization process with
oxidation inhibition of the byproduct, Fuel, 105 (2013) 578–584.
- B.H. Song, Wet magnesium oxide flue gas desulfurization
process: a review, China Environ. Prot. Ind., 8 (2009) 28–30.
- Q. Guo, A study on magnesia FGD regeneration technology,
Nonferrous Metals Eng. Res., 32 (2011) 37–39.
- L. Yan, X. Lu, Q. Wang, Y. Kang, J. Xu, Y. Chen, Research on
sulfur recovery from the byproducts of magnesia wet flue gas
desulfurization, Appl. Therm. Eng., 65 (2014) 487–494.
- L. Yan, Research on regenerative cycle and utilization of MgO
wet flue gas desulfurization byproducts, Chongqing University,
2014.
- T. Zhu, Y. Ma, H. Zhang, D. Li, L. Li, X. Zhou, B. Song, J. Hao,
Experimental investigation of MgSO3 oxidation process by
catalysis in the magnesium desulfurization, Catal. Today, 258
(2015) 70–74.
- T. Qi, L. Wang, S. Wu, Q. Li, J. Liu, L. Meng, H. Xiao, Insight
into structural role of 2D/3D mesoporous silicon in catalysis of
magnesium sulfite oxidation, Appl. Catal. A, 566 (2018) 33–43.
- Q. Li, Y. Yang, L. Wang, P. Xu, Y. Han, Mechanism and kinetics
of magnesium sulfite oxidation catalyzed by multiwalled
carbon nanotube, Appl. Catal. B, 203 (2017) 851–858.
- L. Wang, T. Qi, J. Wang, S. Zhang, H. Xiao, Y. Ma, Uniform
dispersion of cobalt nanoparticles over nonporous TiO2 with
low activation energy for magnesium sulfate recovery in a novel
magnesia-based desulfurization process, J. Hazard. Mater., 342
(2018) 579–588.
- R. Del Valle-Zermeño, J. Formosa, J.A. Aparicio, J.M. Chimenos,
Reutilization of low-grade magnesium oxides for flue gas
desulfurization during calcination of natural magnesite: a
closed-loop process, Chem. Eng. J., 254 (2014) 63–72.
- L. Wang, H. Feng, Y. Dong, J. Peng, W. Li, Solubility and
metastable zone width of aqueous sodium dichromate dihydrate
solutions in the presence of sodium chromate additive, J. Cryst.
Growth, 454 (2016) 105–110.
- H. Lu, J. Wang, T. Wang, N. Wang, Y. Bao, H. Hao, Crystallization
techniques in wastewater treatment: an overview of
applications, Chemosphere, 173 (2017) 474–484.
- T. Wang, H. Lu, J. Wang, Y. Xiao, Y. Zhou, Y. Bao, H. Hao, Recent
progress of continuous crystallization, J. Ind. Eng. Chem., 54
(2017) 14–29.
- C. Himawan, H.J.M. Kramer, G.J. Witkamp, Study on the
recovery of purified MgSO4·7H2O crystals from industrial
solution by eutectic freezing, Sep. Purif. Technol., 50 (2006)
240–248.
- Q. Hu, Y. Li, The process technology application of
magnesium hydrate recovery from magnesium oxide flue gas
desulfurization, Chem. Enterprise Manage., (2013) 241.
- Y.B. Zhang, Y.M. Chen, Y.L. Ma, Effects of several crystallization
conditions on the recovery of desulfurization by-products, Ind.
Saf. Environ. Protect., 37 (2011) 32–34.
- X.J. Ren, X.L. Huang, Phase equilibria in the quaternary system
of Li+, Mg2+∥Cl–, SO42–-H2O at 273.15 K, Inorg. Chem. Ind., 48
(2016) 13–15, 28.
- L.-D. Shiau, Comparison of the interfacial energy and preexponential
factor calculated from the induction time and
metastable zone width data based on classical nucleation
theory, J. Cryst. Growth, 450 (2016) 50–55.
- M. Jin, P. Frohberg, Y. Sun, P. Li, J. Yu, J. Ulrich, Study on
metastable zone width and crystal growth of a ternary system:
case study MgCl2·6H2O·1,4-dioxane, Chem. Eng. Sci., 133 (2015)
181–189.
- X.X. Sun, Y.Z. Sun, J.G. Yu, Cooling crystallization of aluminum
sulfate in pure water, J. Cryst. Growth, 419 (2015) 94–101.
- H. Takiyama, Supersaturation operation for quality control of
crystalline particles in solution crystallization, Adv. Powder
Technol., 23 (2012) 273–278.
- N. Sanzida, Z.K. Nagy, Iterative learning control for the
systematic design of supersaturation controlled batch cooling
crystallisation processes, Comput. Chem. Eng., 59 (2013)
111–121.
- A. Borisenko, Nominal vs. actual supersaturation of solutions, J.
Cryst. Growth, 486 (2018) 122–125.
- Z. Liang, M. Zhang, F. Wu, J.-F. Chen, C. Xue, H. Zhao,
Supersaturation controlled morphology and aspect ratio
changes of benzoic acid crystals, Comput. Chem. Eng., 99 (2017)
296–303.
- S.Y. Qin, Y.F. Zhang, Y. Zhang, Nucleation and morphology of
sodium metaborate dihydrate from NaOH solution, J. Cryst.
Growth, 433 (2016) 143–147.
- S. Li, J. Xu, G. Luo, Control of crystal morphology through
supersaturation ratio and mixing conditions, J. Cryst. Growth,
304 (2007) 219–224.
- D. Aquilano, F. Otálora, L. Pastero, J.M. García-Ruiz, Three
study cases of growth morphology in minerals: halite, calcite
and gypsum, Prog. Cryst. Growth Charact. Mater., 62 (2016)
227–251.
- L. Peng, H. Dai, Y. Wu, Y. Peng, X. Lu, A comprehensive review
of phosphorus recovery from wastewater by crystallization
processes, Chemosphere, 197 (2018) 768–781.
- J.J. Jiang, Measurement of Crystallization Metastable Zone
and Study on Particle Size Control of Ammonium Perchlorate,
Nanjing University of Science and Technology, 2013.
- B. Tansel, G. Lunn, O. Monje, Struvite formation and
decomposition characteristics for ammonia and phosphorus
recovery: a review of magnesium-ammonia-phosphate
interactions, Chemosphere, 194 (2018) 504–514.
- T.L. Ye, Principle and Application of Chemical Crystallization
Process, Beijing University of Technology Press, 2006.