References
- A. Demaharter, Polyurethane rigid foam, a proven thermal
insulating material for applications between +130°C and 196°C,
Cryogenics, 38 (1998) 113–117.
- J. Kuhn, H.P. Ebert, M.C. Arduini-Schuster, Thermal transport
in polystyrene and polyurethane foam insulations, Int. J. Heat
Mass Transfer, 35 (1992) 1795–1801.
- N. Sarier, E. Onder, Thermal characteristics of polyurethane
foams incorporated with phase change materials, Thermochim.
Acta, 454 (2007) 90–98.
- C. Zhang, J. Li, Z. Hu, F. Zhu, Y. Huang, Correlation between
the acoustic and porous cell morphology of polyurethane
foam: effect of interconnected porosity, Mater. Design, 41 (2012)
319–325.
- O. Doutres, N. Atalla, K. Dong, Effect of the microstructure
closed pore content on the acoustic behavior of polyurethane
foams, J. Appl. Phys., 110 (2011) 064901.
- J.G. Gwon, S.K. Kim, J.H. Kim, Sound absorption behavior of
flexible polyurethane foams with distinct cellular structures,
Mater. Design, 89 (2016) 448–454;
- J. Sherwood, C.C. Forst, Constitutive modeling and simulation
of energy absorbing polyurethane foam under impact loading,
Polym. Eng. Sci., 32 (1992) 1138–1146.
- V.A. Lemos, M.S. Santos, E.S. Santos, Application of
polyurethane foam as a sorbent for trace metal preconcentration,
Spectrochim. Acta Part B, 62 (2007) 4–12.
- L. Moise´s, A. Pinto, J. Pires, Characterization of adsorbent
materials supported on polyurethane foams by nitrogen and
toluene adsorption, Microporous Mesoporous Mater., 80 (2005)
253–262.
- H. Li, L. Liu, Oleophilic polyurethane foams for oil spill
cleanup, Procedia Environ. Sci., 18 (2013) 528–533.
- H. Li, L. Liu, F. Yang, Hydrophobic modification of polyurethane
foam for oil spill cleanup, Mar. Pollut. Bull., 64 (2012) 1648–1653.
- A.A. Nikkhah, H. Zilouei, Removal of oil from water using
polyurethane foam modified with nanoclay, Chem. Eng. J., 262
(2015) 278–285.
- M. Medjahdi, N. Benderdouche, B. Bestani, L. Duclaux, L.
Reinert, Modeling of the sorption of crude oil on a polyurethane
foam-powdered activated carbon composite, Desal. Wat. Treat.,
57 (2016) 22311–22320.
- J. Fu, H.E. Naguib, Effect of nanoclay on mechanical proprieties
PMMA/clay nanocomposite foams, J. Cell. Plast., 42 (2006)
325–342.
- J.H. Chang, Y. An, Nanocomposites of polyurethane with various
organoclays: thermo mechanical proprieties morphology and
gas permeability, J. Polym. Sci. Part B: Polym. Phys., 40 (2002)
670–677.
- R. Jahanmardi, B. Kangarlou, A.R. Dibazar, Effects of organically
modified nanoclay on cellular morphology, tensile properties
and dimensional stability of flexible polyurethane foams, J.
Nanostruct. Chem., 9 (2013) 82.
- G.K. Latinwo, D.S. Aribike, L.O. Oyekunle, Effects of
calcium carbonate of different compositions and particle size
distribution on the mechanical properties of flexible foam,
Nature Sci., 9 (2010) 92–101
- A. Wolska, M. Gozdzikiewicz, J. Ryszowska, Thermal and
mechanical behavior of flexible polyurethane foams modified
with graphite and phosphorous fillers, J. Mater. Sci., 47 (2012)
5627–5634.
- Standard Test Method for Compressibility and Recovery of
Gasket Materials - F 36-39 Reapproved, 2003.