References

  1. A. Demaharter, Polyurethane rigid foam, a proven thermal insulating material for applications between +130°C and 196°C, Cryogenics, 38 (1998) 113–117.
  2. J. Kuhn, H.P. Ebert, M.C. Arduini-Schuster, Thermal transport in polystyrene and polyurethane foam insulations, Int. J. Heat Mass Transfer, 35 (1992) 1795–1801.
  3. N. Sarier, E. Onder, Thermal characteristics of polyurethane foams incorporated with phase change materials, Thermochim. Acta, 454 (2007) 90–98.
  4. C. Zhang, J. Li, Z. Hu, F. Zhu, Y. Huang, Correlation between the acoustic and porous cell morphology of polyurethane foam: effect of interconnected porosity, Mater. Design, 41 (2012) 319–325.
  5. O. Doutres, N. Atalla, K. Dong, Effect of the microstructure closed pore content on the acoustic behavior of polyurethane foams, J. Appl. Phys., 110 (2011) 064901.
  6. J.G. Gwon, S.K. Kim, J.H. Kim, Sound absorption behavior of flexible polyurethane foams with distinct cellular structures, Mater. Design, 89 (2016) 448–454;
  7. J. Sherwood, C.C. Forst, Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading, Polym. Eng. Sci., 32 (1992) 1138–1146.
  8. V.A. Lemos, M.S. Santos, E.S. Santos, Application of polyurethane foam as a sorbent for trace metal preconcentration, Spectrochim. Acta Part B, 62 (2007) 4–12.
  9. L. Moise´s, A. Pinto, J. Pires, Characterization of adsorbent materials supported on polyurethane foams by nitrogen and toluene adsorption, Microporous Mesoporous Mater., 80 (2005) 253–262.
  10. H. Li, L. Liu, Oleophilic polyurethane foams for oil spill cleanup, Procedia Environ. Sci., 18 (2013) 528–533.
  11. H. Li, L. Liu, F. Yang, Hydrophobic modification of polyurethane foam for oil spill cleanup, Mar. Pollut. Bull., 64 (2012) 1648–1653.
  12. A.A. Nikkhah, H. Zilouei, Removal of oil from water using polyurethane foam modified with nanoclay, Chem. Eng. J., 262 (2015) 278–285.
  13. M. Medjahdi, N. Benderdouche, B. Bestani, L. Duclaux, L. Reinert, Modeling of the sorption of crude oil on a polyurethane foam-powdered activated carbon composite, Desal. Wat. Treat., 57 (2016) 22311–22320.
  14. J. Fu, H.E. Naguib, Effect of nanoclay on mechanical proprieties PMMA/clay nanocomposite foams, J. Cell. Plast., 42 (2006) 325–342.
  15. J.H. Chang, Y. An, Nanocomposites of polyurethane with various organoclays: thermo mechanical proprieties morphology and gas permeability, J. Polym. Sci. Part B: Polym. Phys., 40 (2002) 670–677.
  16. R. Jahanmardi, B. Kangarlou, A.R. Dibazar, Effects of organically modified nanoclay on cellular morphology, tensile properties and dimensional stability of flexible polyurethane foams, J. Nanostruct. Chem., 9 (2013) 82.
  17. G.K. Latinwo, D.S. Aribike, L.O. Oyekunle, Effects of calcium carbonate of different compositions and particle size distribution on the mechanical properties of flexible foam, Nature Sci., 9 (2010) 92–101
  18. A. Wolska, M. Gozdzikiewicz, J. Ryszowska, Thermal and mechanical behavior of flexible polyurethane foams modified with graphite and phosphorous fillers, J. Mater. Sci., 47 (2012) 5627–5634.
  19. Standard Test Method for Compressibility and Recovery of Gasket Materials - F 36-39 Reapproved, 2003.