References

  1. N. Dwivedi, C. Balomajumder, P. Mondal, Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents, Water Resour. Ind., 15 (2016) 28–40
  2. S.C. Chena, J.K. Liu The response to cyanide of cyanide-resistant Klebsiella oxytoca bacterial strain FEMS, Microbiol. Ecol., 175 (1999) 37–43.
  3. C.D. Hébert, NTP Technical Report on Toxicity Studies of Sodium Cyanide (CAS No. 143-33-9).
  4. R.R. Dash, A. Gaur, C. Balomajumder, Cyanide in industrial wastewaters and its removal: a review on biotreatment, J. Hazard. Mater., 163 (2009) 1–11.
  5. O.A.A. Eletta, O.A. Ajayi, O.O. Ogunleye, I.C. Akpan, Adsorption of cyanide from aqueous solution using calcinated eggshells: equilibrium and optimization studies, J. Environ. Chem. Eng., 4 (2016) 1367–1375.
  6. N. Singh, C. Balomajumder, Simultaneous removal of phenol and cyanide from aqueous solution by adsorption onto surface modified activated carbon prepared from coconut shell, J. Water Process Eng., 9 (2016) 233–245.
  7. J. Shen, H. Zhao, H. Cao, Y. Zhang, Y. Chen, Removal of total cyanide in coking wastewater during a coagulation process: significance of organic polymers, J. Environ. Sci., 26 (2014) 231–239.
  8. O. Alonso-González, F. Nava-Alonso, C. Jimenez-Velasco, A. Uribe-Salas, Copper cyanide removal by precipitation with quaternary ammonium salts, Miner. Eng., 42 (2013) 43–49.
  9. S. Tian, Y. Li, X. Zhao, Cyanide removal with a copper/active carbon fiber cathode via a combined oxidation of a Fenton-like reaction and in situ generated copper oxides at anode, Electrochim. Acta, 180 (2015) 746–755.
  10. A.R. Yeddou, S. Chergui, A. Chergui, F. Halet, A. Hamza, B. Nadjemi, A. Ould-Dris, J. Belkouch, Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon, Miner. Eng., 24 (2011) 788–793.
  11. M. Hijosa-Valsero, R. Molina, H. Schikora, M. Müller, J.M. Bayona, Removal of cyanide from water by means of plasma discharge technology, Water Res., 47 (2013) 1701–1707.
  12. A. Pala, R.R. Politi, G. Kurşun, M. Erol, F. Bakal, G. Öner, E. Çelik, Photocatalytic degradation of cyanide in wastewater using new generated nano-thin film photocatalyst, Surf. Coat. Technol., 271 (2015) 207–216.
  13. E.S. Baeissa, Synthesis and characterization of sulfur-titanium dioxide nanocomposite for photocatalytic oxidation of cyanide using visible light irradiation, Chin. J. Catal., 36 (2015) 698–704.
  14. X. Zhao, J. Zhang, J. Qu, Photoelectrocatalytic oxidation of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode, Electrochim. Acta, 80 (2015) 129–137.
  15. K. Chiang, R. Amal, T. Tran, Photocatalytic oxidation of cyanide: kinetic and mechanistic studies, J. Mol. Catal. A, 193 (2003) 85–297.
  16. S.H. Kim, S.W. Lee, G.M. Lee, B.-T. Lee, S.-T. Yun, S.-O. Kim, Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate, Chemosphere, 143 (2016) 106–114.
  17. J.H. Li, B.F. Yan, X.S. Shao, S.-S. Wang, H.-Y. Tian, Q.-Q. Zhang, Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane, Appl. Surf. Sci., 324 (2015) 82–89.
  18. A. Bumajdad, M. Madkour, Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation, Phys. Chem. Chem. Phys., 16 (2014) 7146–7158.
  19. K.Y. Foo, B.H. Hameed, Decontamination of textile wastewater via TiO2/activated carbon composite materials, Adv. Colloid Interface Sci., 159 (2010) 130–143.
  20. E.B. Simsek, Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation, Appl. Catal. B, 200 (2017) 309–322.
  21. R.M. Mohamed, E.S. Baeissa, Preparation and characterization of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic degradation of cyanide under visible light, Appl. Catal. A, 464–465 (2013) 218–224.
  22. Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig, Synthesis, characterization and evaluation of efficiency of new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for decolorization of methyl orange using visible light irradiation, Appl. Catal. A, 411–412 (2012) 139–145.
  23. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Visible light photocatalytic properties of weak magnetic BiFeO3 nanoparticles, Adv. Mater., 19 (2007) 2889–2892.
  24. T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, X. Sun, Y. Huang, Synthesis of BiFeO3 nanoparticles for the visible-light induced photocatalytic property, Mater. Res. Bull., 59 (2014) 6–12.
  25. S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors, J. Phys. Chem. C, 114 (2010) 2903–2908.
  26. S. Li, J. Zhang, M.G. Kibria, Z. Mi, M. Chaker, D. Ma, R. Nechache, F. Rosei, Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light, Chem. Commun. (Cambridge), 49 (2013) 5856–5858.
  27. S.M. Selbach, M.-A. Einarsrud, T. Tybell, T. Grande, Synthesis of BiFeO3 by wet chemical methods, J. Am. Ceram. Soc., 90 (2007) 3430–3434.
  28. T. Fan, C. Chen, Z. Tang, Y. Ni, C. Lu, Synthesis and characterization of g-C3N4/BiFeO3 composites with an enhanced visible light photocatalytic activity, Mater. Sci. Semicond. Process., 40 (2015) 439–445.
  29. F. Niu, D. Chen, L. Qin, N. Zhang, J. Wang, Z. Chen, Y. Huang, Facile synthesis of highly efficient p-n heterojunction CuO/BiFeO3 composite photocatalysts with enhanced visible-light photocatalytic activity, ChemCatChem, 7 (2015) 3279–3289.
  30. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C: Photochem. Rev., 13 (2012) 169–189.
  31. L.K. Pan, X.J. Liu, Z. Sun, C.Q. Sun, Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis, J. Mater. Chem. A, 1 (2013) 8299–8326.
  32. S.H. Han, K.S. Kim, H.G. Kim, H.G. Lee, H.W. Kang, J.S. Kim, C.I. Cheon, Synthesis and characterization of multiferroic BiFeO3 powders fabricated by hydrothermal method, Ceram. Int., 36 (2010) 1365–1372.
  33. G.V. Subba Rao, C.N.R. Rao, Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and -ferrites, Appl. Spectrosc., 24 (1970) 436–445.
  34. M. Yoon, M. Seo, C. Jeong, J.H. Jang, K.S. Jeon, Synthesis of liposome-templated titania nanodisks: optical properties and photocatalytic activities, Chem. Mater., 17 (2005) 6069–6079.
  35. V. Fruth, L. Mitoseriu, D. Berger, A. Ianculescu, C. Matei, S. Preda, M. Zaharescu, Preparation and characterization of BiFeO3 ceramics, Prog. Solid State Chem., 35 (2007) 193–202.
  36. X. Wang, Y. Zhang, Z. Wu, Magnetic and optical properties of multiferroic bismuth ferrite nanoparticles by tartaric acidassisted sol–gel strategy, Mater. Lett., 64 (2010) 486–488.
  37. D.A. Chang, P. Lin, T.Y. Tseng, Optical properties of ZrTiO4 films grown by radio-frequency magnetron sputtering, J. Appl. Phys., 77 (1995) 4445–4451.
  38. Y.N. Huo, Y. Jin, Y. Zhang, Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity, J. Mol. Catal. A: Chem., 331 (2010) 15–20.
  39. R.Q. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles, J. Phys. Chem. C, 114 (2010) 21390–21396.
  40. K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Sonochemical synthesis of amorphous Iron, Nature, 353 (1991) 414–416.
  41. L. Zhou, W. Wang, L. Zhang, Ultrasonic-assisted synthesis of visible-light induced Bi2Mo6 (M =W, Mo) photocatalysts, J. Mol. Catal. A: Chem., 268 (2007) 195–200.
  42. J. Lishan, D. Tong, L. Qingbiao, T. Yong, Study of photocatalytic performance of SrFeO3 by ultrasonic radiation, Catal. Commun., 8 (2007) 963–966.
  43. D. Wang, J. Tang, Z. Zou, J. Ye, Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn), Chem. Mater., 17 (2005) 5177–5182.
  44. J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B, 60 (2005) 211–221.
  45. A.V. Deshpande, U. Kumar, Effect of method of preparation on photophysical properties of RhB impregnated sol–gel hosts, J. Non-Cryst. Solids, 306 (2002) 149–159.
  46. A. Ghanadzadeh, M.A. Zanjanchi, R. Tirbandpay, The role of host environment on the aggregative properties of some ionic dye materials, J. Mol. Struct., 616 (2002) 167–174.
  47. I. Lopez Arbeloa, P. Ruiz Ojeda, Dimeric states of Rhodamine B, Chem. Phys. Lett., 87 (1982) 556–560.
  48. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354 (1991) 56–58.
  49. T.A. Saleh, M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, A. Al-Yamani, Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nanoparticles on multiwall carbon nanotubes, Chem. Eng. J., 166 (2011) 407–412.
  50. X.J. Wang, S.W. Yao, X.B. Li, Sol-gel preparation of CNT/ZnO nanocomposite and its photocatalytic property, Chin. J. Chem., 27 (2009) 1317–1320.
  51. L.P. Zhu, G.H. Liao, W.Y. Huang, L.L. Ma, Y. Yang, Y. Yu, S.Y. Fu, Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes, Mater. Sci. Eng. B, 163 (2009) 194–198.
  52. R.M. Mohamed, M. Abdel Salam, Photocatalytic reduction of aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite, Mater. Res. Bull., 50 (2014) 85–90.
  53. T.A. Saleh, The Role of Carbon Nanotubes in Enhancement of Photocatalysis, syntheses and Applications of Carbon Nanotubes and Their Composites (S. Suzuki, ed.), InTech Publisher, Vol. 21, 2013, pp. 493–497.