References
- N. Dwivedi, C. Balomajumder, P. Mondal, Comparative
investigation on the removal of cyanide from aqueous solution
using two different bioadsorbents, Water Resour. Ind., 15 (2016)
28–40
- S.C. Chena, J.K. Liu The response to cyanide of cyanide-resistant
Klebsiella oxytoca bacterial strain FEMS, Microbiol. Ecol., 175
(1999) 37–43.
- C.D. Hébert, NTP Technical Report on Toxicity Studies of
Sodium Cyanide (CAS No. 143-33-9).
- R.R. Dash, A. Gaur, C. Balomajumder, Cyanide in industrial
wastewaters and its removal: a review on biotreatment, J.
Hazard. Mater., 163 (2009) 1–11.
- O.A.A. Eletta, O.A. Ajayi, O.O. Ogunleye, I.C. Akpan,
Adsorption of cyanide from aqueous solution using calcinated
eggshells: equilibrium and optimization studies, J. Environ.
Chem. Eng., 4 (2016) 1367–1375.
- N. Singh, C. Balomajumder, Simultaneous removal of phenol
and cyanide from aqueous solution by adsorption onto surface
modified activated carbon prepared from coconut shell, J. Water
Process Eng., 9 (2016) 233–245.
- J. Shen, H. Zhao, H. Cao, Y. Zhang, Y. Chen, Removal of total
cyanide in coking wastewater during a coagulation process:
significance of organic polymers, J. Environ. Sci., 26 (2014)
231–239.
- O. Alonso-González, F. Nava-Alonso, C. Jimenez-Velasco, A.
Uribe-Salas, Copper cyanide removal by precipitation with
quaternary ammonium salts, Miner. Eng., 42 (2013) 43–49.
- S. Tian, Y. Li, X. Zhao, Cyanide removal with a copper/active
carbon fiber cathode via a combined oxidation of a Fenton-like
reaction and in situ generated copper oxides at anode,
Electrochim. Acta, 180 (2015) 746–755.
- A.R. Yeddou, S. Chergui, A. Chergui, F. Halet, A. Hamza, B.
Nadjemi, A. Ould-Dris, J. Belkouch, Removal of cyanide in
aqueous solution by oxidation with hydrogen peroxide in
presence of copper-impregnated activated carbon, Miner. Eng.,
24 (2011) 788–793.
- M. Hijosa-Valsero, R. Molina, H. Schikora, M. Müller, J.M.
Bayona, Removal of cyanide from water by means of plasma
discharge technology, Water Res., 47 (2013) 1701–1707.
- A. Pala, R.R. Politi, G. Kurşun, M. Erol, F. Bakal, G. Öner, E.
Çelik, Photocatalytic degradation of cyanide in wastewater
using new generated nano-thin film photocatalyst, Surf. Coat.
Technol., 271 (2015) 207–216.
- E.S. Baeissa, Synthesis and characterization of sulfur-titanium
dioxide nanocomposite for photocatalytic oxidation of cyanide
using visible light irradiation, Chin. J. Catal., 36 (2015) 698–704.
- X. Zhao, J. Zhang, J. Qu, Photoelectrocatalytic oxidation
of Cu-cyanides and Cu-EDTA at TiO2 nanotube electrode,
Electrochim. Acta, 80 (2015) 129–137.
- K. Chiang, R. Amal, T. Tran, Photocatalytic oxidation of cyanide:
kinetic and mechanistic studies, J. Mol. Catal. A, 193 (2003)
85–297.
- S.H. Kim, S.W. Lee, G.M. Lee, B.-T. Lee, S.-T. Yun, S.-O. Kim,
Monitoring of TiO2-catalytic UV-LED photo-oxidation
of cyanide contained in mine wastewater and leachate,
Chemosphere, 143 (2016) 106–114.
- J.H. Li, B.F. Yan, X.S. Shao, S.-S. Wang, H.-Y. Tian, Q.-Q. Zhang,
Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity
and visible-light response activity of polyvinylidene fluoride
membrane, Appl. Surf. Sci., 324 (2015) 82–89.
- A. Bumajdad, M. Madkour, Understanding the superior
photocatalytic activity of noble metals modified titania under
UV and visible light irradiation, Phys. Chem. Chem. Phys., 16
(2014) 7146–7158.
- K.Y. Foo, B.H. Hameed, Decontamination of textile wastewater
via TiO2/activated carbon composite materials, Adv. Colloid
Interface Sci., 159 (2010) 130–143.
- E.B. Simsek, Solvothermal synthesized boron doped TiO2
catalysts: photocatalytic degradation of endocrine disrupting
compounds and pharmaceuticals under visible light irradiation,
Appl. Catal. B, 200 (2017) 309–322.
- R.M. Mohamed, E.S. Baeissa, Preparation and characterization
of Pd–TiO2–hydroxyapatite nanoparticles for the photocatalytic
degradation of cyanide under visible light, Appl. Catal. A, 464–465 (2013) 218–224.
- Z. Mesgari, M. Gharagozlou, A. Khosravi, K. Gharanjig,
Synthesis, characterization and evaluation of efficiency of
new hybrid Pc/Fe-TiO2 nanocomposite as photocatalyst for
decolorization of methyl orange using visible light irradiation,
Appl. Catal. A, 411–412 (2012) 139–145.
- F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou,
J.M. Liu, Visible light photocatalytic properties of weak magnetic
BiFeO3 nanoparticles, Adv. Mater., 19 (2007) 2889–2892.
- T. Gao, Z. Chen, Y. Zhu, F. Niu, Q. Huang, L. Qin, X. Sun, Y.
Huang, Synthesis of BiFeO3 nanoparticles for the visible-light
induced photocatalytic property, Mater. Res. Bull., 59 (2014)
6–12.
- S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, C.W. Nan, Controlled
fabrication of BiFeO3 uniform microcrystals and their magnetic
and photocatalytic behaviors, J. Phys. Chem. C, 114 (2010)
2903–2908.
- S. Li, J. Zhang, M.G. Kibria, Z. Mi, M. Chaker, D. Ma, R.
Nechache, F. Rosei, Remarkably enhanced photocatalytic
activity of laser ablated Au nanoparticle decorated BiFeO3
nanowires under visible-light, Chem. Commun. (Cambridge),
49 (2013) 5856–5858.
- S.M. Selbach, M.-A. Einarsrud, T. Tybell, T. Grande, Synthesis of
BiFeO3 by wet chemical methods, J. Am. Ceram. Soc., 90 (2007)
3430–3434.
- T. Fan, C. Chen, Z. Tang, Y. Ni, C. Lu, Synthesis and
characterization of g-C3N4/BiFeO3 composites with an enhanced
visible light photocatalytic activity, Mater. Sci. Semicond.
Process., 40 (2015) 439–445.
- F. Niu, D. Chen, L. Qin, N. Zhang, J. Wang, Z. Chen, Y. Huang,
Facile synthesis of highly efficient p-n heterojunction CuO/BiFeO3 composite photocatalysts with enhanced visible-light
photocatalytic activity, ChemCatChem, 7 (2015) 3279–3289.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol. C: Photochem. Rev., 13
(2012) 169–189.
- L.K. Pan, X.J. Liu, Z. Sun, C.Q. Sun, Nanophotocatalysts via
microwave-assisted solution-phase synthesis for efficient
photocatalysis, J. Mater. Chem. A, 1 (2013) 8299–8326.
- S.H. Han, K.S. Kim, H.G. Kim, H.G. Lee, H.W. Kang, J.S. Kim,
C.I. Cheon, Synthesis and characterization of multiferroic
BiFeO3 powders fabricated by hydrothermal method, Ceram.
Int., 36 (2010) 1365–1372.
- G.V. Subba Rao, C.N.R. Rao, Infrared and electronic spectra
of rare earth perovskites: ortho-chromites, -manganites and
-ferrites, Appl. Spectrosc., 24 (1970) 436–445.
- M. Yoon, M. Seo, C. Jeong, J.H. Jang, K.S. Jeon, Synthesis of
liposome-templated titania nanodisks: optical properties and
photocatalytic activities, Chem. Mater., 17 (2005) 6069–6079.
- V. Fruth, L. Mitoseriu, D. Berger, A. Ianculescu, C. Matei, S.
Preda, M. Zaharescu, Preparation and characterization of
BiFeO3 ceramics, Prog. Solid State Chem., 35 (2007) 193–202.
- X. Wang, Y. Zhang, Z. Wu, Magnetic and optical properties
of multiferroic bismuth ferrite nanoparticles by tartaric acidassisted
sol–gel strategy, Mater. Lett., 64 (2010) 486–488.
- D.A. Chang, P. Lin, T.Y. Tseng, Optical properties of ZrTiO4
films grown by radio-frequency magnetron sputtering, J. Appl.
Phys., 77 (1995) 4445–4451.
- Y.N. Huo, Y. Jin, Y. Zhang, Citric acid assisted solvothermal
synthesis of BiFeO3 microspheres with high visible-light
photocatalytic activity, J. Mol. Catal. A: Chem., 331 (2010) 15–20.
- R.Q. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, Enhanced
photocatalytic activity and ferromagnetism in Gd doped BiFeO3
nanoparticles, J. Phys. Chem. C, 114 (2010) 21390–21396.
- K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff,
Sonochemical synthesis of amorphous Iron, Nature, 353 (1991)
414–416.
- L. Zhou, W. Wang, L. Zhang, Ultrasonic-assisted synthesis of
visible-light induced Bi2Mo6 (M =W, Mo) photocatalysts, J. Mol.
Catal. A: Chem., 268 (2007) 195–200.
- J. Lishan, D. Tong, L. Qingbiao, T. Yong, Study of photocatalytic
performance of SrFeO3 by ultrasonic radiation, Catal. Commun.,
8 (2007) 963–966.
- D. Wang, J. Tang, Z. Zou, J. Ye, Photophysical and photocatalytic
properties of a new series of visible-light-driven photocatalysts
M3V2O8 (M = Mg, Ni, Zn), Chem. Mater., 17 (2005) 5177–5182.
- J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and
characterization of Ag–TiO2 multiphase nanocomposite thin
films with enhanced photocatalytic activity, Appl. Catal. B, 60
(2005) 211–221.
- A.V. Deshpande, U. Kumar, Effect of method of preparation on
photophysical properties of RhB impregnated sol–gel hosts, J.
Non-Cryst. Solids, 306 (2002) 149–159.
- A. Ghanadzadeh, M.A. Zanjanchi, R. Tirbandpay, The role of
host environment on the aggregative properties of some ionic
dye materials, J. Mol. Struct., 616 (2002) 167–174.
- I. Lopez Arbeloa, P. Ruiz Ojeda, Dimeric states of Rhodamine B,
Chem. Phys. Lett., 87 (1982) 556–560.
- S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354
(1991) 56–58.
- T.A. Saleh, M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, A.
Al-Yamani, Enhancement in photocatalytic activity for
acetaldehyde removal by embedding ZnO nanoparticles on
multiwall carbon nanotubes, Chem. Eng. J., 166 (2011) 407–412.
- X.J. Wang, S.W. Yao, X.B. Li, Sol-gel preparation of CNT/ZnO
nanocomposite and its photocatalytic property, Chin. J. Chem.,
27 (2009) 1317–1320.
- L.P. Zhu, G.H. Liao, W.Y. Huang, L.L. Ma, Y. Yang, Y. Yu, S.Y.
Fu, Preparation, characterization and photocatalytic properties
of ZnO-coated multi-walled carbon nanotubes, Mater. Sci. Eng.
B, 163 (2009) 194–198.
- R.M. Mohamed, M. Abdel Salam, Photocatalytic reduction of
aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite, Mater. Res. Bull., 50 (2014) 85–90.
- T.A. Saleh, The Role of Carbon Nanotubes in Enhancement
of Photocatalysis, syntheses and Applications of Carbon
Nanotubes and Their Composites (S. Suzuki, ed.),
InTech Publisher, Vol. 21, 2013, pp. 493–497.