References
- S. Chena, D. Wu, Adapting ecological risk valuation for natural
resource damage assessment in water pollution, Environ. Res.,
164 (2018) 85–92.
- M.I. Litter, M. Morgada, J. Bundschuh, Possible treatments
for arsenic removal in Latin America waters for human
consumption, Environ. Pollut., 158 (2010) 1105–1118.
- J.C. Ng, J. Wang, A. Shraim, A global health problem caused
by arsenic from natural sources, Chemosphere, 352 (2000)
1353–1359.
- Secretaría de Salud, Modificación a la Norma Oficial Mexicana
NOM-127-SSA1-1994, Salud ambiental, Agua para uso y
consumo humano. Límites permisibles de calidad y tratamientos
a que debe someterse el agua para su potabilización, Diario
Oficial de la Federación, Miércoles 22 de noviembre de 2000.
- M. Bilici-Baskan, A. Pala, A statistical experiment design
approach for arsenic removal by coagulation process using
aluminum sulfate, Desalination, 254 (2010) 42–48.
- H. Strathman, Electrodialysis, a mature technology with a
multitude of new applications, Desalination, 264 (2010) 268–288.
- J.F. Martínez-Villafañe, C. Montero-Ocampo, A.M. García-Lara, Energy and electrode consumption analysis of
electrocoagulation for the removal of arsenic from groundwater,
J. Hazard. Mater., 172 (2009) 1617–1622.
- M. Sen, A. Manna, P. Pal, Removal of arsenic from contaminated
groundwater by membrane-integrated hybrid treatment
system, J. Membr. Sci., 354 (2010) 108–113.
- S. Alvarado, M. Guédez, M.P. Lué-Merú, G. Nelson, A.
Alvaro, A.C. Jesús, Z. Gyula, Arsenic removal from waters
by bioremediation with the aquatic plant Water Hyacinth
(Eichhornia crassipes) and Lesser Duckweed (Lemna minor),
Bioresour. Technol., 99 (2008) 8436–8440.
- D. Mohan, Jr., C.U. Pittman, Arsenic removal from water/
wastewater using adsorbents - a critical review, J. Hazard.
Mater., 142 (2007) 1–53.
- Z.O. Kocabas, Y. Yürüm, Kinetic modeling of arsenic removal
from water by ferric ion loaded red mud, Sep. Sci. Technol., 46
(2011) 2380–2390.
- Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, Arsenic removal
using mesoporous alumina prepared via a templating method,
Environ. Sci. Technol., 38 (2004) 924–931.
- K. Upendra, Agricultural products and by-products as a
low cost adsorbent for heavy metal removal from water and
wastewater, a review, Sci. Res. Essay, 1 (2006) 33–37.
- H. Dong, X. Guan, I.M.C. Lo, Fate of As (V)-treated nano zerovalent
iron: determination of arsenic desorption potential under
varying environmental conditions by phosphate extraction,
Water Res., 468 (2012) 4071–4080.
- V. Zaspalis, A. Pagana, S. Sklari, Arsenic removal from
contaminated water by iron oxide sorbents and porous ceramic
membranes, Desalination, 217 (2007) 167–180.
- A. Saritha, B. Raju, D. Narayana Rao, A. Roychowdhury, D. Das,
K.A. Hussain, Facile green synthesis of iron oxide nanoparticles
via solid-state thermolysis of a chiral, 3D anhydrous potassium
tris(oxalato) ferrate(III) precursor, Adv. Powder Technol., 26
(2015) 349–354.
- T. Wang, J. Lin, Z. Chen, M.R. Megharaj Naidu, Green
synthesized iron nanoparticles by green tea and eucalyptus
leaves extracts used for removal of nitrate in aqueous solution,
J. Clean. Prod., 83 (2014) 413–419.
- X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles
for abatement of environmental pollutants, materials and
engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006)
111–122.
- G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N.
Nadagouda, R.S. Varma, Degradation of bromothymol blue
by ‘greener’ nano-scale zero-valent iron synthesized using tea
polyphenols, J. Mater. Chem., 19 (2009) 8671–8677.
- V. Madhavi, T.N.V.K.V. Prasad, A.V.B. Reddy, B.R. Reddy,
G. Madhavi, Application of phytogenic zerovalent iron
nanoparticles in the adsorption of hexavalent chromium,
Spectrochim. Acta, 116 (2013) 17–25.
- V. Smuleac, R. Varma, S. Sikdar, D. Bhattacharya: green synthesis
of Fe and Fe/Pd bimetallic nanoparticles in membranes for
reductive degradation of chlorinated organics, J. Membr. Sci.,
379 (2011) 131–137.
- Z. Es’haghi, F. Vafaeinezhad, S. Hooshmand, Green synthesis of
magnetic iron nanoparticles coated by olive oil and verifying its
efficiency in extraction of nickel from environmental samples
via UVVis spectrophotometry, Process Safety Environ. Protect.,
102 (2016) 403–409.
- T.M.S. Attia, X.L. Hu, D.Q. Yin, Synthesised magnetic
nanoparticles coated zeolite (MNCZ) for the removal of arsenic
(As) from aqueous solution, J Exp. Nanosci., 9 (2014) 2075–2085.
- P.V.R.K. Praveen Kumar, G.K.P. Ramacharyulu, B. Singh,
Montmorillonites supported with metal oxide nanoparticles
for decontamination of sulfur mustard, Appl. Clay Sci., 116–117
(2015) 263–272.
- J. Reddy Koduru, Y.Y. Chang, J.K. Yang, I.S. Kim, Iron oxide
impregnated Morus alba L. fruit peel for biosorption of Co(II):
biosorption properties and mechanism, Sci. World J., 2013
(2013) 1–14.
- M. Nairat, T. Shahwan, A.E. Erog ̆lu, H. Fuchs, Incorporation
of iron nanoparticles into clinoptilolite and its application for
the removal of cationic and anionic dyes, J. Ind. Eng. Chem., 21
(2015) 1143–1151.
- H.S. Park, J.R. Koduru, K.H. Choo, B. Lee, Activated carbons
impregnated with iron oxide nanoparticles for enhanced
removal of bisphenol A and natural organic matter, J. Hazard.
Mater., 286 (2016) 315–324.
- F. Yu, J. Ma, J. Wang, M. Zhang, J. Zheng, Magnetic iron oxide
nanoparticles functionalized multi-walled carbon nanotubes
for toluene, ethylbenzene and xylene removal from aqueous
solution, Chemosphere, 146 (2016) 162–172.
- A. Yadav, A.K. Teja, N. Verma, Removal of phenol from water
by catalytic wet air oxidation using carbon bead supported
iron nanoparticle containing carbon nanofibers in an especially
configured reactor, J. Environ. Chem. Eng., 4 (2016) 1504–1513.
- W. Wang, Y. Cheng, T. Kong, G. Cheng, Iron nanoparticles
decoration onto three-dimensional graphene for rapid and
efficient degradation of azo dye, J. Hazard. Mater., 299 (2015)
50–58.
- H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S.B. Kim, Enhanced
Cr(VI) removal using iron nanoparticle decorated graphene,
Nanoscale, 3 (2011) 3583–3585.
- J. Guo, R. Wang, W.W. Tjiu, J. Pan, T. Liu, Synthesis of Fe
nanoparticles@graphene composites for environmental
applications, J. Hazard. Mater., 225–226 (2012) 63–73.
- G.C. D’Eeckenbrugge, F. Leal, R.E. Paull, K.G. Rohrbach,
Chapter 2 Morphology, Anatomy and Taxonomy, in D.P.
Bartholomew, Ed., The Pineapple, Botany, Production and Uses,
CABI Publishing, 2003, pp. 13–32.
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti,
J. Rouquerol, T. Siemieniewska, Reporting physisorption data
for gas/solid systems with special reference to the determination
of surface area and porosity, Pure Appl. Chem., 57 (1985)
603–619.
- M.S. De Celis, J.P. Villaverde, A.L. Cukierman, N.E. Amadeo,
Oxidative dehydrogenation of ethylbenzene to styrene on
activated carbons derived from a native wood as catalyst, Lat.
Am. Appl. Res., 39 (2009) 165–171.
- J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. Cunha, N.F. Cardoso,
J.L. Brasil, S.L.P. Dias, Pecan nutshell as biosorbent to remove
Cu(II) and Pb(II) from aqueous solutions, J. Hazard. Mater., 162
(2009) 270–280.
- K. Ishimaru, T. Hata, P. Bronsveld, D. Meier, Y. Imamura,
Spectroscopic analysis of carbonization behavior of wood,
cellulose and lignin, J. Mater. Sci., 42 (2007) 122–129.
- A. Atrens, A.S. Lim, ESCA studies of nitrogen-containing
stainless steels, J. Appl. Phys. A, 51 (1990) 411–418.
- Y.H. Lin, H.H. Tseng, M.Y. Wey, M.D. Lin, Characteristics of
two types of stabilized nano zero-valent iron and transport in
porous media, Sci. Total Environ., 408 (2010) 2260–2267.
- P.L. Smedley, D.G. Kinniburgh, A review of the source,
behaviour and distribution of arsenic in natural waters, Appl.
Geochem., 17 (2002) 517–568.
- H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water
by supported nano zero-valent iron on activated carbon, J.
Hazard. Mater., 172 (2009) 1591–1596.
- S.R. Chowdhury, A.R. Pratt, E.K. Yanful, Arsenic removal
from aqueous solutions by mixed magnetite-maghemite
nanoparticles, Environ. Earth Sci., 64 (2011) 411–423.
- Z. Liu, F.S. Zhang, R. Sasai, Arsenate removal from water using
Fe3O4-loaded activated carbon prepared from waste biomass,
Chem. Eng. J., 160 (2010) 57–62.
- M.G. Mostafa, Y.H. Chen, J.S. Jean, C.C. Liu, Y.C. Lee, Kinetics
and mechanism of arsenate removal by nanosized iron oxidecoated
perlite, J. Hazard. Mater., 187 (2001) 89–95.
- C. Sutherland, C. Venkobachar, A diffusion-chemisorption
kinetic model for simulating biosorption using forest macro
fungus Fomes fasciatus, Int. Res. J. Plant Sci., 1 (2010) 107–117.
- S. Bang, G.P. Korfiatis, X. Meng, Removal of arsenic from water
by zero-valent iron, J. Hazard. Mater., 121 (2005) 61–67.
- D.G.J. Mann, N. Labbé, R.W. Sykes, K. Gracom, L. Kline, I.M.
Swamidoss, J.N. Burris, M. Davis, C.N. Jr Stewart, Rapid
assessment of lignin content and structure in switchgrass
(Panicum virgatum) grown under different environmental
conditions, Bioenergy Res., 2 (2009) 246–256.
- L. Prasanna Lingamdinne, J. Reddy Koduru, Y.-L., Y.Y. Chang,
J.K. Yang, Studies on removal of Pb(II) and Cr(III) using
graphene oxide based inverse spinel nickel ferrite nanocomposite
as sorbent, Hydrometallurgy, 165 (2016) 64-72.
- H. Roh, M.R. Yu, K. Yakkala, J. Reddy Koduru, J.K. Yang, Y.Y.
Chang, Removal studies of Cd(II) and explosive compounds
using buffalo weed biochar-alginate beads, J. Ind. Eng. Chem.,
26 (2015) 226–233.
- M. Aslam Malana, R. Beenish Qureshi, M. Naeem Ashiq,
Adsorption studies on nano aluminium doped manganese
copper ferrite polymer (MA, VA, AA) composite: kinetic and
mechanism, Chem. Eng. J., 172 (2001) 721–727.
- S. Wang, B. Gao, Y. Li, A.E. Creamer, F. He, Adsorptive removal
of arsenate from aqueous solutions by biocharsupported zerovalent
iron nanocomposite: batch and continuous flow tests, J.
Hazard. Mater., 322 (2017) 172–181.
- M.T. Sikder, S. Tanaka, T. Saito, M. Kurasaki, Application
of zerovalent iron impregnated chitosan-carboxymethyl-β-cyclodextrin composite beads as arsenic sorbent, J. Environ.
Chem. Eng., 2 (2014) 370–376.
- A. Yürüm, Z.Ö. Kocabas-Atakl, M. Sezen, R. Semiat, Y. Yurum,
Fast deposition of porous iron oxide on activated carbon by
microwave heating and arsenic (V) removal from water, Chem.
Eng. J. 242 (2014) 321-332.
- A. Santos, F.W. Ferreira de Oliveira, F.H. Araujo Silva, D.A.
Maria, AJ Domingos, W.A. De Almeida Macêdo, H.E. Leonhardt
Palmieri, Batista M. Franco, Synthesis and characterization of
iron-PVA hydrogel microspheres and their use in the arsenic
(V) removal from aqueous solution, Chem. Eng. J., 210 (2012)
432–443.
- M.M. Dávila-Jiménez, M.P. Elizalde-González, J. Mattusch, P.
Morgenstern, M.A. Pérez-Cruz, Y. Reyes-Ortega, R. Wennrich,
H. Yee-Madeira, In situ and ex situ study of the enhanced
modification with iron of clinoptilolite-rich zeolitic tuff for
arsenic sorption from aqueous solutions, J. Colloid Interface
Sci., 322 (2008) 527–536.