References

  1. S. Chena, D. Wu, Adapting ecological risk valuation for natural resource damage assessment in water pollution, Environ. Res., 164 (2018) 85–92.
  2. M.I. Litter, M. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin America waters for human consumption, Environ. Pollut., 158 (2010) 1105–1118.
  3. J.C. Ng, J. Wang, A. Shraim, A global health problem caused by arsenic from natural sources, Chemosphere, 352 (2000) 1353–1359.
  4. Secretaría de Salud, Modificación a la Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental, Agua para uso y consumo humano. Límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización, Diario Oficial de la Federación, Miércoles 22 de noviembre de 2000.
  5. M. Bilici-Baskan, A. Pala, A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate, Desalination, 254 (2010) 42–48.
  6. H. Strathman, Electrodialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268–288.
  7. J.F. Martínez-Villafañe, C. Montero-Ocampo, A.M. García-Lara, Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from groundwater, J. Hazard. Mater., 172 (2009) 1617–1622.
  8. M. Sen, A. Manna, P. Pal, Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system, J. Membr. Sci., 354 (2010) 108–113.
  9. S. Alvarado, M. Guédez, M.P. Lué-Merú, G. Nelson, A. Alvaro, A.C. Jesús, Z. Gyula, Arsenic removal from waters by bioremediation with the aquatic plant Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor), Bioresour. Technol., 99 (2008) 8436–8440.
  10. D. Mohan, Jr., C.U. Pittman, Arsenic removal from water/ wastewater using adsorbents - a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  11. Z.O. Kocabas, Y. Yürüm, Kinetic modeling of arsenic removal from water by ferric ion loaded red mud, Sep. Sci. Technol., 46 (2011) 2380–2390.
  12. Y. Kim, C. Kim, I. Choi, S. Rengaraj, J. Yi, Arsenic removal using mesoporous alumina prepared via a templating method, Environ. Sci. Technol., 38 (2004) 924–931.
  13. K. Upendra, Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and wastewater, a review, Sci. Res. Essay, 1 (2006) 33–37.
  14. H. Dong, X. Guan, I.M.C. Lo, Fate of As (V)-treated nano zerovalent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction, Water Res., 468 (2012) 4071–4080.
  15. V. Zaspalis, A. Pagana, S. Sklari, Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes, Desalination, 217 (2007) 167–180.
  16. A. Saritha, B. Raju, D. Narayana Rao, A. Roychowdhury, D. Das, K.A. Hussain, Facile green synthesis of iron oxide nanoparticles via solid-state thermolysis of a chiral, 3D anhydrous potassium tris(oxalato) ferrate(III) precursor, Adv. Powder Technol., 26 (2015) 349–354.
  17. T. Wang, J. Lin, Z. Chen, M.R. Megharaj Naidu, Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution, J. Clean. Prod., 83 (2014) 413–419.
  18. X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants, materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006) 111–122.
  19. G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda, R.S. Varma, Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols, J. Mater. Chem., 19 (2009) 8671–8677.
  20. V. Madhavi, T.N.V.K.V. Prasad, A.V.B. Reddy, B.R. Reddy, G. Madhavi, Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium, Spectrochim. Acta, 116 (2013) 17–25.
  21. V. Smuleac, R. Varma, S. Sikdar, D. Bhattacharya: green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics, J. Membr. Sci., 379 (2011) 131–137.
  22. Z. Es’haghi, F. Vafaeinezhad, S. Hooshmand, Green synthesis of magnetic iron nanoparticles coated by olive oil and verifying its efficiency in extraction of nickel from environmental samples via UVVis spectrophotometry, Process Safety Environ. Protect., 102 (2016) 403–409.
  23. T.M.S. Attia, X.L. Hu, D.Q. Yin, Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution, J Exp. Nanosci., 9 (2014) 2075–2085.
  24. P.V.R.K. Praveen Kumar, G.K.P. Ramacharyulu, B. Singh, Montmorillonites supported with metal oxide nanoparticles for decontamination of sulfur mustard, Appl. Clay Sci., 116–117 (2015) 263–272.
  25. J. Reddy Koduru, Y.Y. Chang, J.K. Yang, I.S. Kim, Iron oxide impregnated Morus alba L. fruit peel for biosorption of Co(II): biosorption properties and mechanism, Sci. World J., 2013 (2013) 1–14.
  26. M. Nairat, T. Shahwan, A.E. Erog ̆lu, H. Fuchs, Incorporation of iron nanoparticles into clinoptilolite and its application for the removal of cationic and anionic dyes, J. Ind. Eng. Chem., 21 (2015) 1143–1151.
  27. H.S. Park, J.R. Koduru, K.H. Choo, B. Lee, Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter, J. Hazard. Mater., 286 (2016) 315–324.
  28. F. Yu, J. Ma, J. Wang, M. Zhang, J. Zheng, Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution, Chemosphere, 146 (2016) 162–172.
  29. A. Yadav, A.K. Teja, N. Verma, Removal of phenol from water by catalytic wet air oxidation using carbon bead supported iron nanoparticle containing carbon nanofibers in an especially configured reactor, J. Environ. Chem. Eng., 4 (2016) 1504–1513.
  30. W. Wang, Y. Cheng, T. Kong, G. Cheng, Iron nanoparticles decoration onto three-dimensional graphene for rapid and efficient degradation of azo dye, J. Hazard. Mater., 299 (2015) 50–58.
  31. H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S.B. Kim, Enhanced Cr(VI) removal using iron nanoparticle decorated graphene, Nanoscale, 3 (2011) 3583–3585.
  32. J. Guo, R. Wang, W.W. Tjiu, J. Pan, T. Liu, Synthesis of Fe nanoparticles@graphene composites for environmental applications, J. Hazard. Mater., 225–226 (2012) 63–73.
  33. G.C. D’Eeckenbrugge, F. Leal, R.E. Paull, K.G. Rohrbach, Chapter 2 Morphology, Anatomy and Taxonomy, in D.P. Bartholomew, Ed., The Pineapple, Botany, Production and Uses, CABI Publishing, 2003, pp. 13–32.
  34. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  35. M.S. De Celis, J.P. Villaverde, A.L. Cukierman, N.E. Amadeo, Oxidative dehydrogenation of ethylbenzene to styrene on activated carbons derived from a native wood as catalyst, Lat. Am. Appl. Res., 39 (2009) 165–171.
  36. J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. Cunha, N.F. Cardoso, J.L. Brasil, S.L.P. Dias, Pecan nutshell as biosorbent to remove Cu(II) and Pb(II) from aqueous solutions, J. Hazard. Mater., 162 (2009) 270–280.
  37. K. Ishimaru, T. Hata, P. Bronsveld, D. Meier, Y. Imamura, Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin, J. Mater. Sci., 42 (2007) 122–129.
  38. A. Atrens, A.S. Lim, ESCA studies of nitrogen-containing stainless steels, J. Appl. Phys. A, 51 (1990) 411–418.
  39. Y.H. Lin, H.H. Tseng, M.Y. Wey, M.D. Lin, Characteristics of two types of stabilized nano zero-valent iron and transport in porous media, Sci. Total Environ., 408 (2010) 2260–2267.
  40. P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Appl. Geochem., 17 (2002) 517–568.
  41. H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 172 (2009) 1591–1596.
  42. S.R. Chowdhury, A.R. Pratt, E.K. Yanful, Arsenic removal from aqueous solutions by mixed magnetite-maghemite nanoparticles, Environ. Earth Sci., 64 (2011) 411–423.
  43. Z. Liu, F.S. Zhang, R. Sasai, Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass, Chem. Eng. J., 160 (2010) 57–62.
  44. M.G. Mostafa, Y.H. Chen, J.S. Jean, C.C. Liu, Y.C. Lee, Kinetics and mechanism of arsenate removal by nanosized iron oxidecoated perlite, J. Hazard. Mater., 187 (2001) 89–95.
  45. C. Sutherland, C. Venkobachar, A diffusion-chemisorption kinetic model for simulating biosorption using forest macro fungus Fomes fasciatus, Int. Res. J. Plant Sci., 1 (2010) 107–117.
  46. S. Bang, G.P. Korfiatis, X. Meng, Removal of arsenic from water by zero-valent iron, J. Hazard. Mater., 121 (2005) 61–67.
  47. D.G.J. Mann, N. Labbé, R.W. Sykes, K. Gracom, L. Kline, I.M. Swamidoss, J.N. Burris, M. Davis, C.N. Jr Stewart, Rapid assessment of lignin content and structure in switchgrass (Panicum virgatum) grown under different environmental conditions, Bioenergy Res., 2 (2009) 246–256.
  48. L. Prasanna Lingamdinne, J. Reddy Koduru, Y.-L., Y.Y. Chang, J.K. Yang, Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nanocomposite as sorbent, Hydrometallurgy, 165 (2016) 64-72.
  49. H. Roh, M.R. Yu, K. Yakkala, J. Reddy Koduru, J.K. Yang, Y.Y. Chang, Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads, J. Ind. Eng. Chem., 26 (2015) 226–233.
  50. M. Aslam Malana, R. Beenish Qureshi, M. Naeem Ashiq, Adsorption studies on nano aluminium doped manganese copper ferrite polymer (MA, VA, AA) composite: kinetic and mechanism, Chem. Eng. J., 172 (2001) 721–727.
  51. S. Wang, B. Gao, Y. Li, A.E. Creamer, F. He, Adsorptive removal of arsenate from aqueous solutions by biocharsupported zerovalent iron nanocomposite: batch and continuous flow tests, J. Hazard. Mater., 322 (2017) 172–181.
  52. M.T. Sikder, S. Tanaka, T. Saito, M. Kurasaki, Application of zerovalent iron impregnated chitosan-carboxymethyl-β-cyclodextrin composite beads as arsenic sorbent, J. Environ. Chem. Eng., 2 (2014) 370–376.
  53. A. Yürüm, Z.Ö. Kocabas-Atakl, M. Sezen, R. Semiat, Y. Yurum, Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water, Chem. Eng. J. 242 (2014) 321-332.
  54. A. Santos, F.W. Ferreira de Oliveira, F.H. Araujo Silva, D.A. Maria, AJ Domingos, W.A. De Almeida Macêdo, H.E. Leonhardt Palmieri, Batista M. Franco, Synthesis and characterization of iron-PVA hydrogel microspheres and their use in the arsenic (V) removal from aqueous solution, Chem. Eng. J., 210 (2012) 432–443.
  55. M.M. Dávila-Jiménez, M.P. Elizalde-González, J. Mattusch, P. Morgenstern, M.A. Pérez-Cruz, Y. Reyes-Ortega, R. Wennrich, H. Yee-Madeira, In situ and ex situ study of the enhanced modification with iron of clinoptilolite-rich zeolitic tuff for arsenic sorption from aqueous solutions, J. Colloid Interface Sci., 322 (2008) 527–536.