References

  1. K. Hunger, Ed., Industrial Dyes. Chemistry, Properties, Application, Wiley-VCH, Weinheim, 2003.
  2. Brochure Clariant Product, 2014. https://www.clariant.com/en/ Business-Units/Pigments/Special.../Aluminium-Finishing.
  3. T. Poiger, S.D. Richardson, G.L. Baughman, Analysis of anionic metallized azo and formazan dyes by capillary electrophoresismass spectrometry, J. Chromatogr. A, 886 (2000) 259–270.
  4. V.M. Correia, T. Stephenson, S.J. Judd, Characterization of textile wastewater – a review, Environ. Technol., 15 (1994) 917–926.
  5. S.F. Dubow, G.D. Boardmen, D.J. Michelsen, in A. Reife, H.S. Freemqan, Environmental Chemistry of Dyes and Pigments, Wiley, USA, 1996.
  6. Environmental Agency, Guidance for Textile sector, Integrated Pollution Prevention and Control (IPPC), IPPC S6.05, 2002.
  7. C. Allegre, P. Moulin, M. Maisseu, G.L. Charbit, Treatment and reuse of reactive dyeing effluents, J. Membr. Sci., 269 (2006) 15–34.
  8. V. Dulman, C. Simion, A. Bârsãnescu, I. Bunia, V. Neagu, Adsorption of anionic textile dye Acid Green 9 from aqueous solution onto weak or strong base anion exchangers, J. Appl. Polym, Sci., 113 (2009) 615–627.
  9. A. Masoumi, M. Ghaemy, Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride, Express Polym. Lett., 8 (2014) 187–196.
  10. M. Wawrzkiewicz, Z. Hubicki, Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins, J. Hazard. Mater., 164 (2009) 502–509.
  11. M. Leszczynska, Z. Hubicki, Application of weakly and strongly basic anion exchangers for the removal of Brilliant Yellow from aqueous solutions, Desal. Wat. Treat., 2 (2009) 156–161.
  12. M. Wawrzkiewicz, Z. Hubicki, Kinetic studies of dyes sorption from aqueous solutions onto the strongly basic anion-exchanger Lewatit MonoPlus M-600, Chem. Eng. J., 150 (2009) 509–515.
  13. M. Wawrzkiewicz, Z. Hubicki, Equilibrium and kinetic studies on the adsorption of acidic dye by the gel anion exchanger, J. Hazard. Mater., 172 (2009) 868–874.
  14. M. Greluk, Z. Hubicki, Sorption of SPADNS azo dye on polystyrene anion exchangers: equilibrium and kinetic studies, J. Hazard. Mater., 172 (2009) 280–297.
  15. S. Dragan, M. Cristea, A. Airinei, I. Poinescu, C. Luca, Sorption of aromatic compounds on macroporous anion exchangers based on polyacrylamide: relation between structure and sorption behavior, J. Appl. Polym. Sci., 55 (1995) 421–430.
  16. M. Wawrzkiewicz, Sorption of Sunset Yellow dye by weak base anion exchanger – kinetic and equilibrium studies, Environ. Technol., 32 (2011) 445–465.
  17. D. Kaušpėdienė, E. Kazlauskienė, A. Selskienė, Removal of chromium complex dye from aqueous solution using strongly basic and weakly basic anion exchangers, Ion Exchange Lett., 3 (2010) 19–24.
  18. D. Kaušpėdienė, A. Gefenienė, E. Kazlauskienė, R. Ragauskas, A. Selskienė, Simultaneous removal of azo and phthalocyanine dyes from aqueous solutions using weak base anion exchange resin, Water Air Soil Pollut., 224 (2013) 1769–1781.
  19. D.B. Prelot, A. Geneste, L. Ch. De Menorval, J. Zajac, Removal of three anionic orange-type dyes and Cr(VI) oxyanion from aqueous solutions onto strongly basic anion-exchange resin, The effect of single-component and competitive adsorption, Colloids Surf. A, 508 (2016) 240–250.
  20. H. Javadian, M. Torabi Angaji, M. Naushad, Synthesis and characterization of polyaniline/γ-alumina nanocomposite: a comparative study for the adsorption of three different anionic dyes, J. Ind. Eng. Chem., 20 (2014) 3890–3900.
  21. D. Pathania, G. Sharma, A. Kumar, Mu. Naushad, S. Kalia, A. Sharma, Z.A. Alothman, Combined sorptional photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite, Toxicol. Environ. Chem., 97 (2015) 526–537.
  22. A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan, Z.A. Alothman, Adsorptive removal of toxic dye using Fe3O4−TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
  23. T.A. Arica, E. Ayas, M.Y. Arica, Magnetic MCM-41 silica particles grafted with poly(glycidylmethacrylate) brush: modification and application for removal of direct dyes, Microporous Mesoporous Mater., 243 (2017) 164–175.
  24. E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Kousha, M. Naushad, A. Bhatnagar, Desorption of Methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling, J. Clean. Prod., 152 (2017) 443–453.
  25. G. Bayramoglu, M.Y. Arica, Adsorption of Congo Red dye by native amine and carboxyl modified biomass of Funalia trogii: isotherms, kinetics and thermodynamics mechanisms, Korean J. Chem. Eng., 35 (2018) 1303–1311.
  26. A.B. Albadarin, M. Charara, B.J.A. Tarboush , M.N.M. Ahmad, T.A. Kurniawan, M. Naushad, G.M. Walker, Ch. Mangwandi, Mechanism analysis of tartrazine biosorption onto masau stones; a low cost by-product from semi-arid regions, J. Mol. Liq., 242 (2017) 478–483.
  27. A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker, C. Mangwandi, Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue, Chem. Eng. J., 307 (2017) 264–272.
  28. A. Sharma, G. Sharma, M. Naushad, A.A. Ghfar, D. Pathania, Remediation of anionic dye from aqueous system using bio-adsorbent prepared by microwave activation, Environ. Technol., 39 (2018) 917–930.
  29. G. Bayramoğlu, V. Cengiz Ozalp, M. Yakup Arıca, Removal of Disperse Red 60 dye from aqueous solution using free and composite fungal biomass of Lentinus concinnus, Water Sci. Technol., 75 (2016) 366–377.
  30. G. Bayramoglu, A. Akbulut, G. Liman, M.Y. Arica, Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl)amine ligand modified magnetic p(GMA-EGDMA) cationic resin: adsorption, isotherm and kinetic studies, Chem. Eng. Res. Des., 124 (2017) 85–97.
  31. S.K. Sahni, J. Reedijk, Coordination chemistry of chelating resins and ion exchangers, Coord. Chem. Rev., 59 (1984) 1–139.
  32. B. Busche, R. Wiacek, J. Davidson, V. Koonsiripaiboon, W. Yantasee, R.S. Addleman, G.E. Fryxell, Synthesis of nanoporous iminodiacetic acid sorbents for binding transition metals, Inorg. Chem. Commun., 12 (2009) 312–315.
  33. Z. Hubicki, D. Kolodynska, Selective removal of heavy metal ions from waters waste waters using ion exchange methods, in Ion Exchange Technologies, InTech, 2012, pp. 193–240.
  34. M. Marhol, K.L. Cheng, Some chelating ion-exchange resins containing ketoimino carboxylic acids as functional groups, Talanta, 21 (1974) 751–762.
  35. S.A. Cavaco, S. Fernandes, C.M. Augusto, M.J. Quina, L.M. Gando-Ferreira, Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents, J. Hazard. Mater., 169 (2009) 516–523.
  36. F. Gode, E. Pehlivan, A comparative study of two chelating ionexchange resins for the removal of chromium(III) from aqueous solution, J. Hazard. Mater., 100 (2003) 231–243.
  37. W. Wei, B. Zhao, M. He, B. Chen, B. Hu, Iminodiacetic acid functionalized magnetic nanoparticles for speciation of Cr(III) and Cr(VI) followed by graphite furnace atomic absorption spectrometry detection, RSC Adv., 7 (2017) 8504–8511.
  38. S. Hirataa, U.K. Hondab, O. Shikinob, N. Maekawac, M. Aiharac, Determination of chromium_III and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry, Spectrochim. Acta, Part B, 55 (2000) 1089–1099.
  39. Z. Zainol, M. Nicol, Ion-exchange equilibria of Ni2+, Co2+, Mn2+ and Mg2+ with iminodiacetic acid chelating resin Amberlite IRC 748, Hydrometallurgy, 99 (2009) 175–180.
  40. A. Yuchi, T. Sato, Y. Morimoto, H. Mizuno, H. Wada, Adsorption mechanism of trivalent metal ions on chelating resins containing iminodiacetic acid groups with reference to selectivity, Anal. Chem., 69 (1997) 2941–2944.
  41. H. Hashemi-Moghaddam, Z. Noshiri, Removal of cyanide and zinc–cyanide complex with malachite green functionalized amberlite XAD-4 resin from electroplating wastewater, Desal. Wat. Treat., 53 (2015) 2481–2488.
  42. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–551.
  43. J.T. Kanzelmeyer, C.D. Adams, Removal of copper from a metal-complex dye by oxidative pretreatment and ion exchange, Water Environ. Res., 68 (1996) 222–228.
  44. V. Baublytė, L. Čečiotkiene, B. Baltrušaite, A. Gefeniene, E. Kazlauskiene, D. Kaušpėdiene, A. Selskiene, Removal of copper phthalocyanine dye from aqueous solutions, Chem. Technol., 2 (2010) 54–61.
  45. Ch. Y. Kim, H.M. Choi, H.T. Cho, Effect of deacetylation on sorption of dyes and chromium on chitin, J. Appl. Polym. Sci., 63 (1998) 725–736.
  46. G.K. Zoorob, J.A. Caruso, Speciation of chromium dyes by highperformance liquid chromatography with inductively coupled plasma mass spectrometric detection, J. Chromatograph. A, 773 (1997) 157–162.
  47. Technical data for Purolite S930, Purolite International Co., Ltd. Available at: https://puroweb.purolite.com.
  48. Technical data for Purolite A847, Purolite International Co., Ltd. Available at: https://puroweb.purolite.com.
  49. N. Sakkayawong, P. Thiravetyan, W. Nakbanpote, Adsorption mechanism of synthetic reactive dye wastewater by chitosan, J. Colloid Interface Sci., 286 (2005) 36–42.
  50. A.A. Zagorodni, D.L. Kotova, V.F. Selemenev, Infrared spectroscopy of ion exchange resins: chemical deterioration of the resins, React. Funct. Polym., 53 (2002) 157–171.
  51. Z.W. Ming, C.P. Long, P.B. Cai, Z.Q. Xing, X.B. Zhang, Synergistic adsorption of phenol from aqueous solutions onto polymeric adsorbents, J. Hazard. Mater., 152 (2006) 123–129.
  52. E. Marais, T. Nyokong, Adsorption of 4-nitrophenol onto Amberlite IRA-900 modified with metallophtalocyanines, J. Hazard. Mater., 152 (2008) 293–301.
  53. X. Li, E. Puhakka, J. Ikonen, M. Söderlund, A. Lindberg, S. Holgersson, A. Martin, M. Siitari-Kauppi, Sorption of Se species on mineral surfaces, part I: batch sorption and multi-site modelling, Appl. Geochem., 95 (2018) 147–157.
  54. M. Greluk, Z. Hubicki, Effect of basicity of anion exchangers and number and positions of sulfonic groups of acid dyes on dyes adsorption on macroporous anion exchangers with styrenic polymer matrix, Chem. Eng. J., 215–216 (2013) 731–739.
  55. H.N. Tran, Sh.-J. You, H.-P. Chao, Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study, J. Environ. Chem. Eng., 4 (2016) 2671–2682.
  56. C. Namasivayam, S. Senthilkumar, Adsorption of copper(II) by “waste” Fe(III)/Cr(III) hydroxide from aqueous solution and radiator manufacturing industry wastewater, Sep. Sci. Technol., 34 (1999) 201–217.
  57. P. Saha, Sh. Chowdhury, Insight into Adsorption Thermodynamics, in: M. Tadashi, Thermodynamics, InTech, 2011, pp. 349–364.
  58. I.J. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 4 (1918) 1361–1403.
  59. R. Masel, Principles of Adsorption and Reaction on Solid Surfaces, Wiley Interscience, 1996.
  60. H.M.F. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem., 57 (1906) 385–470.
  61. D. Chatzopoulos, A. Varma, R. Irvine, Activated carbon adsorption and desorption of toluene in the aqueous phase, AIChE J., 39 (1993) 2027–2041.
  62. A. Behnamfard, M.M. Salarirad, Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon, J. Hazard. Mater., 170 (2009) 127–133.
  63. P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions, Desalination, 261 (2010) 52–60.
  64. S. Lagergren, Zur theorie der sogenanten adsorption gelöster stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  65. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., B136 (2006) 681–689.
  66. Sh. Wang, H. Li, Kinetic modelling and mechanism of dye adsorption on unburned carbon, Dyes Pigm., 72 (2007) 308–314.
  67. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon materials, J. Sanitary Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–56.
  68. S.J. Allen, G. McKay, K.Y.H. Khader, Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat, Environ. Pollut., 56 (1989) 39–50.
  69. F. Guzel, H. Yakut, G. Topal, Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues, J. Hazard. Mater., 153 (2008) 1275–1287.
  70. V.J. Inglezakis, A.A. Zorpas, Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems, Desal. Wat. Treat., 36 (2012) 149–157.
  71. M. Sarkar, P.K. Acharya, B.J. Bhattacharya, Modeling the adsorption kinetics of some priority organic pollutants in water from diffusion and activation energy parameters, J. Colloid Interface Sci., 266 (2003) 23–32.
  72. W.H. Cheung, Y.S. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan, Bioresour. Technol., 98 (2007) 2897–2904.
  73. V.M. Correia, T. Stephenson, S.J. Judd, Characterisation of textile wastewaters – a review, Environ. Technol., 15 (1994) 917–926.
  74. M. Wawrzkiewicz, Removal of C. I. Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewater, Chem. Eng. J., 217 (2013) 414–425.