References

  1. S. Khansorthong, M. Hunsom, Remediation of wastewater from pulp and paper mill industry by the electrochemical technique, Chem. Eng. J., 151 (2009) 228–234.
  2. S. Ghafari, M. Hasan, M.K. Aroua, Bio-electro chemical removal of nitrate from water and wastewater—a review, Bioresour. Technol., 99 (2008) 3965–3974.
  3. M.k. Sharma, H. Sharma, N. Bapna, Toxic effects of high nitrate intake in oesophagus and stomach of rabbits, Environ. Health. Perspect., 2 (2013) 407–411.
  4. J.C. Fanning, The chemical reduction of nitrate in aqueous solution, Coordinat. Chem. Rev., 199 (2000) 159–179.
  5. N.F. Gray, Water Technology, CRC Press., 2010.
  6. A. Cays-Vesterby, Nitrate removal from water using conifer tissues, J.US. SJWP, 4 (2006) 42–54.
  7. H. Pahlavanzadeh, R. Katal, H. Mohammadi, Synthesize of polypyrrole nanocomposite and its application for nitrate removal from aqueous solution, J. Ind. Eng. Chem., 18 (2012) 948–956.
  8. Y.L. Lau, Y.F. Yeong, Optimization of nitrate removal from aqueous solution by amine-functionalized MCM-41 using response surface methodology, Procedia. Eng., 148 (2016) 1239–1246.
  9. R. Katal, S. Pourkarimi, E. Bahmani, H.A. Dehkordi, M.A. Ghayyem, H. Esfandian, Synthesis of Fe3O4/polyaniline nanocomposite and its application for nitrate removal from aqueous solutions, J. Vinyl. Addit. Technol., 19 (2013) 147–156.
  10. L. Yang, M. Yang, P. Xu, X. Zhao, H. Bai, H. Li, Characteristics of nitrate removal from aqueous solution by modified steel slag, Water, 9 (757) (2017) 2–17.
  11. L. Liu, M. Ji, F. Wang, Adsorption of nitrate onto ZnCl2-modified coconut granular activated carbon: kinetics, characteristics, and adsorption dynamics, Adv. Mater. Sci. Eng., 2018 (2018) 1–12.
  12. M. Chiban, A. Soudani, F. Sinan, Removal of nitrate ions by using low-cost adsorbents: Equilibrium isotherm, kinetics and thermodynamic study, in, Nova. Science Publishers, 2012.
  13. M. Nishizawa, T. Matsue, I. Uchida, Fabrication of a pH-sensitive microarray electrode and applicability to biosensors, Sens. Actuators. B. Chem., 13 (1993) 53–56.
  14. R. Bushra, Nanoadsorbents-based polymer nanocomposite for environmental remediation, in: New Polymer Nanocomposites for Environmental Remediation, Elsevier, (2018) 243–260.
  15. A. Naghizadeh, S.J. Mousavi, E. Derakhshani, M. Kamranifar, S.M. Sharifi, Fabrication of polypyrrole composite on perlite zeolite surface and its application for removal of copper from wood and paper factories wastewater, Korean. J. Chem. Eng., 35 (2018) 66–670.
  16. S. Deng, Y.P. Ting, Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr (VI) anions: sorption capacity and uptake mechanisms, Environ. Sci. Technol., 39 (2005) 8490–8496.
  17. C. Weidlich, K.-M. Mangold, K. Jüttner, Conducting polymers as ion-exchangers for water purification, Electroch. Acta., 47 (2001) 741–745.
  18. M. Ghorbani, H. Esfandian, N. Taghipour, R. Katal, Application of polyaniline and polypyrrole composites for paper mill wastewater treatment, Desalination, 263 (2010) 279–284.
  19. M. Ait Haki, M. Laabd, H. Chafai, H. Kabli, M. Ez-Zahery, M. Bazzaoui, R. Lakhmiri, A. Albourine, Comparative adsorption of nitrate ions on the polypyrrole and polyaniline from aqueous solution, J. Disper. Sci. Technol., 38 (2017) 598–603.
  20. S. Wong, T. Teng, A. Ahmad, A. Zuhairi, G. Najafpour, Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation, J. Hazard. Mater., 135 (2006) 378–388.
  21. M. Bhaumik, A. Maity, V. Srinivasu, M.S. Onyango, Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers, Chem. Eng. J., 181 (2012) 323–333.
  22. J. Antony, D. Perry, C. Wang, M. Kumar, An application of Taguchi method of experimental design for new product design and development process, Assembly. Autom., 26 (2006) 18–24.
  23. A. Maity, S. Sinha Ray, Highly conductive core–shell nanocomposite of poly (N-vinylcarbazole)–polypyrrole with multiwalled carbon nanotubes, Macromol. Rapid. Comm., 29 (2008) 1582–1587.
  24. P. Xu, X. Han, C. Wang, B. Zhang, X. Wang, H.L. Wang, Facile synthesis of polyaniline-polypyrrole nanofibers for application in chemical deposition of metal nanoparticles, Macromol. Rapid. Comm., 29 (2008) 1392–1397.
  25. M. Edrissi, R. Norouzbeigi, Taguchi optimization for combustion synthesis of aluminum oxide nano-particles, Chinese. J. Chem., 26 (2008) 1401–1406.
  26. A.K. Das, S. Saha, A. Pal, S.K. Maji, Surfactant-modified alumina: An efficient adsorbent for malachite green removal from water environment, J. Environ. Sci. Health. Part A., 44 (2009) 896–905.
  27. R.K. Roy, Design of experiments using the Taguchi approach: 16 steps to product and process improvement, John Wiley & Sons, 2001.
  28. C. Wang, H. Wu, S.-L. Chung, Optimization of experimental conditions based on Taguchi robust design for the preparation of nano-sized TiO2 particles by solution combustion method, J. Porous. Mater., 13 (2006) 307–314.
  29. R. Ansari, N.K. Fahim, A.F. Delavar, Removal of nitrite ions from aqueous solutions using conducting electro active polymers, Open Process Chem. J., 2 (2009).
  30. H. Esfandian, B. Khoshandam, M. Parvini, A. Samadi-Maybodi, An analysis of the sensitivity of fixed bed adsorption for diazinon removal: experimental and modeling studies, Desal. Water Treat., 70 (2017) 330–338.
  31. H. Esfandian, M. Parvini, B. Khoshandam, A. Samadi-Maybodi, Artificial neural network (ANN) technique for modeling the mercury adsorption from aqueous solution using Sargassum Bevanom algae, Desal. Water Treat., 57 (2016) 17206–17219.