References

  1. Klaus Hunger, Industrial Dyes – Chemistry, Properties, Application, Wiley, 2003.
  2. H. Zollinger, Color Chemistry: Synthesis, properties and applications of organic dyes and pigments, VCH Publishers, New York, NY, USA, 1987.
  3. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review, Adv. Colloid Interf. Sci., 209 (2014) 172−184.
  4. Y. Anjaneyulu, N.S. Chary, D.S. Suman Raj, Decolourization of industrial effluents–available methods and emerging technologies—a review, Rev. Environ. Sci. Biotechnol., 4 (2005) 245–273.
  5. N.M. Julkapli, S. Bagheri, S.B.A. Hamid, Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes, Scient. World J. 2014, http://dx.doi.org/10.1155/2014/692307.
  6. V.M. Correia, T. Stephenson, S.J. Judd, Characterization of textile wastewaters—a review, Environ. Technol., 15 (1994) 917–929.
  7. M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal of hexavalent chromium-contaminated water and wastewater: A review, Water Air Soil Pollut., 200 (2009) 59–77.
  8. Guidelines for Drinking-Water Quality, 4th ed., World Health Organisation, 2011.
  9. E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes from waste waters: a review, Environ. Int., 30 (2004) 953–971.
  10. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  11. A. Kumar, C. Guo, G. Sharma, D. Pathania, Mu Naushad, S. Kalia, P. Dhiman, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination and mineralization of 4-chlorophenol from simulated waste water, RSC Adv., 6 (2016) 13251–13263.
  12. C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 39 (2010) 4206−4219.
  13. D. Yue, X. Qian, Y. Zhao, Photocatalytic remediation of ionic pollutant, Sci. Bull., 60 (2015) 1791–1806.
  14. F. Fresno, R. Portela, S. Suarez, J.M. Coronado, Photocatalytic materials: recent achievements and near future trends, J. Mater. Chem. A, 22 (2014) 863–884.
  15. D. Robert, S. Malato, Solar photocatalysis: a clean process for water detoxification, Sci. Total Environ., 291 (2011) 85–97.
  16. B. Thomas, L.K. Alexander, Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso–macroporous nanospheres, Appl. Nanosci., 8 (2018) 125–135.
  17. H. Liu, T. Liu, Z. Zhang, X. Dong, Y. Liu, Z. Zhu, Simultaneous conversion of organic dye and Cr(VI) by SnO2/rGO microcomposites, J. Mol. Catal. A, 410 (2015) 41–48.
  18. F. Jing, R. Liang, J. Xiong, R. Chen, S. Zhang, Y. Li, L. Wu, MIL-68(Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain Cr(VI) and Malachite Green, Appl. Catal. B, 206 (2017) 9–15.
  19. X. Zhao, Q. Li, X. Zhang, H. Su, K. Lan, A. Chen, Simultaneous removal of metal ions and methyl orange by combined selective adsorption and photocatalysis, Environ. Prog. Sustain. Energy, 30 (2011) 567– 575.
  20. N.O.S. Keskin, A. Celebioglu, O.F. Sarioglu, A.D. Ozkan, T. Uyar, T. Tekinay, Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrousm web, RSC Adv., 5 (2015) 86867.
  21. D. Cetin, S. Donmez, G. Donmez, The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment, J. Environ. Manage., 88 (2008) 76–82.
  22. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  23. J. Amighian, E. Karimzadeh, M. Mozaffari, The effect of Mn2+ substitution on magnetic properties of MnxFe3-xO4 nanoparticles prepared by coprecipitation method, J. Magne. Magn. Mater., 332 (2013) 157–162.
  24. Md. Amir, A. Baykal, S. Güner, H. Güngüneş, H. Sözeri, Magneto optical investigation and hyperfine interactions of copper substituted Fe3O4 nanoparticles, Ceram. International, 41 (2015) 231–239.
  25. J. Giri, P. Pradhan, V. Somani, H. Chelawat, S. Chhatre, R. Banerjee, D. Bahadur, Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications, J. Magne. Magn. Mater., 320 (2008) 724–730.
  26. P. Saravanan, S. Alam, L.D. Kandpal, G.N. Mathur, Effect of substitution of Mn ion on magnetic properties of Fe3O4 nanocrystallites, J. Mater. Sci. Lett., 21 (2002) 2135–2137.
  27. H.W.P. Carvalho, P. Hammer, S.H. Pulcinelli, C.V. Santilli, E.F. Molina, Improvement of the photocatalytic activity of magnetite by Mn-incorporation, Mater. Sci. Eng. B, 181 (2014) 64–69.
  28. H. Zhu, S. Zhang, Y.-X. Huang, L. Wu, S. Sun, Monodisperse MxFe3−xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction, Nano Lett., 6 (2013) 2947–2951.
  29. X. Liang, Z. He, G. Wei, P. Liu, Y. Zhong, W. Tan, P. Du, J. Zhu, H. He, J. Zhang, The distinct effects of Mn substitution on the reactivity of magnetite in heterogeneous Fenton reaction and Pb(II) adsorption, J. Colloid Interf. Sci., 426 (2014) 181–189.
  30. E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review, Sep. Purif. Technol., 87 (2012) 1–14.
  31. J. Zhu, S. Wei, M. Chen, H. Gu, S.B. Rapole, S. Pallavkar, T.C. Ho, J. Hopper, Z. Guo, Magnetic nanocomposites for environmental remediation, Adv. Powder Technol., 24 (2013) 459–467.
  32. A.A. Alqadami, Mu Naushad, M.A. Abdalla, M.R. Khan, Z.A. Alothman, Adsorptive removal of toxic dye using Fe3O4−TSC nanocomposite: Equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data, 61(11) (2016) 3806–3813.
  33. P.K. Boruah, P. Borthakur, G. Darabdhara, C.K. Kamaja, I. Karbhal, M.V. Shelke, P. Phukan, D. Saikia, M.R. Das, Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite, RSC Adv., 6 (2016) 11049–11063.
  34. S.K. Giri, N.N. Das, G.C. Pradhan, Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution, Colloid Surf. A, 389 (2011) 43–49.
  35. JCPDS-Joint Committee on Powder Diffraction Standards 26, 1997.
  36. J. Wang, G. Liu, Y. Liu, C. Zhou, Y. Wu, Photocatalytic degradation of methyl orange by Fe2O3-Fe3O4 nanoparticles and Fe2O3-Fe3O4-montmorillonite nanocomposites, Clean – Soil Air Water, 45 (2017) 1600472.
  37. Q. Feng, S. Li, W. Ma, H.-J. Fan, X. Wan, Y. Lei, Z. Chen, J. Yang, B. Qin, Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation, J. Alloys Compd., 737 (2018) 197–206.
  38. R.V. Solomon, I.S. Lydia, J.P. Merlin, P. Venuvanalingam, Enhanced photocatalytic degradation of azo dyes using nano Fe3O4, J. Iranian Chem. Soc., 9 (2012) 101–109.
  39. S. Bharati, D. Nataraj, D. Mangalraj, Y. Masuda, K. Senthil, K. Yong, Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB), J. Phys. D: Appl. Phys., 43 (2010) 015501.
  40. S.K. Giri, N. Das, Visible light induced photocatalytic decolourisation of rhodamine B by magnetite nanoparticles synthesised using recovered iron from waste iron ore tailings, Desal. Water Treat., 57 (2016) 900–907.
  41. P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He, Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles, J. Hazard. Mater., 173 (2010) 614–621.
  42. N. Sezgin, A. Yalçın, Y. Köseoğlu, MnFe2O4 nanospinels as potential sorbent for adsorption of chromium from industrial wastewater, Desal. Water Treat., 57 (2016) 16495–16506.
  43. J. Hu, I.M.C. Lo, G. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal, Sep. Purific. Technol., 56 (2007) 249–256.
  44. L. Yang, F. Wang, Y.-F. Meng, Q.-H. Tang, Z-Q. Liu, Fabrication and characterization of manganese ferrite nanospheres as a magnetic adsorbent of chromium, J. Nanomater., 2013 (2013) 1–5.
  45. G. Ren, X. Wang, P. Huang, B. Zhong, Z. Zhang, L. Yang, X. Yang, Chromium(VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid phase reduction method, Sci. Total Environ., 607–608 (2017) 900–910.
  46. M.R. Lasheen, I.Y. El-Sherif, D.Y. Sabry, S.T. El-Wakeel, M.F. El-Shahat, Removal and recovery of Cr(VI) by magnetite nanoparticles, Desal. Water Treat., 52 (2014) 6464–6473.
  47. S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interf. Sci., 468 (2015) 334–346.
  48. S. Patnaik, K.K. Das, A. Mohanty, K.M. Parida, Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation, Catal. Today, 315 (2018) 52–56.
  49. I.O. Ali, A.G. Mostafa, Photocatalytic reduction of chromate oxyanions on MMnFe2O4 (M=Zn, Cd) nanoparticles, Mater. Sci. Semiconduct. Process, 33 (2015) 189–198.
  50. C.M. Ma, Y.S. Shen, P.H. Lin, Photoreduction of Cr(VI) ions in aqueous solutions by UV/TiO2 photocatalytic processes, Int. J. Photoenergy, 10 (2012), 1155–381971.