References
- Klaus Hunger, Industrial Dyes – Chemistry, Properties, Application,
Wiley, 2003.
- H. Zollinger, Color Chemistry: Synthesis, properties and
applications of organic dyes and pigments, VCH Publishers,
New York, NY, USA, 1987.
- M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal
from aqueous solution by adsorption: A review, Adv. Colloid
Interf. Sci., 209 (2014) 172−184.
- Y. Anjaneyulu, N.S. Chary, D.S. Suman Raj, Decolourization of
industrial effluents–available methods and emerging technologies—a review, Rev. Environ. Sci. Biotechnol., 4 (2005) 245–273.
- N.M. Julkapli, S. Bagheri, S.B.A. Hamid, Recent advances in
heterogeneous photocatalytic decolorization of synthetic dyes,
Scient. World J. 2014, http://dx.doi.org/10.1155/2014/692307.
- V.M. Correia, T. Stephenson, S.J. Judd, Characterization of textile
wastewaters—a review, Environ. Technol., 15 (1994) 917–929.
- M. Owlad, M.K. Aroua, W.A.W. Daud, S. Baroutian, Removal
of hexavalent chromium-contaminated water and wastewater:
A review, Water Air Soil Pollut., 200 (2009) 59–77.
- Guidelines for Drinking-Water Quality, 4th ed., World Health
Organisation, 2011.
- E. Forgacs, T. Cserhati, G. Oros, Removal of synthetic dyes
from waste waters: a review, Environ. Int., 30 (2004) 953–971.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- A. Kumar, C. Guo, G. Sharma, D. Pathania, Mu Naushad, S.
Kalia, P. Dhiman, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction
of carcinogenic Cr(VI) and dechlorination and
mineralization of 4-chlorophenol from simulated waste water,
RSC Adv., 6 (2016) 13251–13263.
- C.C. Chen, W.H. Ma, J.C. Zhao, Semiconductor-mediated photodegradation
of pollutants under visible-light irradiation,
Chem. Soc. Rev., 39 (2010) 4206−4219.
- D. Yue, X. Qian, Y. Zhao, Photocatalytic remediation of ionic
pollutant, Sci. Bull., 60 (2015) 1791–1806.
- F. Fresno, R. Portela, S. Suarez, J.M. Coronado, Photocatalytic
materials: recent achievements and near future trends, J.
Mater. Chem. A, 22 (2014) 863–884.
- D. Robert, S. Malato, Solar photocatalysis: a clean process for
water detoxification, Sci. Total Environ., 291 (2011) 85–97.
- B. Thomas, L.K. Alexander, Enhanced synergetic effect of
Cr(VI) ion removal and anionic dye degradation with superparamagnetic
cobalt ferrite meso–macroporous nanospheres,
Appl. Nanosci., 8 (2018) 125–135.
- H. Liu, T. Liu, Z. Zhang, X. Dong, Y. Liu, Z. Zhu, Simultaneous
conversion of organic dye and Cr(VI) by SnO2/rGO microcomposites,
J. Mol. Catal. A, 410 (2015) 41–48.
- F. Jing, R. Liang, J. Xiong, R. Chen, S. Zhang, Y. Li, L. Wu, MIL-68(Fe) as an efficient visible-light-driven photocatalyst for the
treatment of a simulated waste-water contain Cr(VI) and Malachite
Green, Appl. Catal. B, 206 (2017) 9–15.
- X. Zhao, Q. Li, X. Zhang, H. Su, K. Lan, A. Chen, Simultaneous
removal of metal ions and methyl orange by combined selective
adsorption and photocatalysis, Environ. Prog. Sustain.
Energy, 30 (2011) 567– 575.
- N.O.S. Keskin, A. Celebioglu, O.F. Sarioglu, A.D. Ozkan, T.
Uyar, T. Tekinay, Removal of a reactive dye and hexavalent
chromium by a reusable bacteria attached electrospun nanofibrousm
web, RSC Adv., 5 (2015) 86867.
- D. Cetin, S. Donmez, G. Donmez, The treatment of textile
wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment, J. Environ. Manage., 88
(2008) 76–82.
- S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst,
R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization,
vectorization, physicochemical characterizations,
and biological applications, Chem. Rev., 108 (2008) 2064–2110.
- J. Amighian, E. Karimzadeh, M. Mozaffari, The effect of Mn2+
substitution on magnetic properties of MnxFe3-xO4 nanoparticles
prepared by coprecipitation method, J. Magne. Magn.
Mater., 332 (2013) 157–162.
- Md. Amir, A. Baykal, S. Güner, H. Güngüneş, H. Sözeri, Magneto
optical investigation and hyperfine interactions of copper
substituted Fe3O4 nanoparticles, Ceram. International, 41
(2015) 231–239.
- J. Giri, P. Pradhan, V. Somani, H. Chelawat, S. Chhatre, R.
Banerjee, D. Bahadur, Synthesis and characterizations of
water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B =
Mn, Co (x = 0–1)] for biomedical applications, J. Magne. Magn.
Mater., 320 (2008) 724–730.
- P. Saravanan, S. Alam, L.D. Kandpal, G.N. Mathur, Effect of
substitution of Mn ion on magnetic properties of Fe3O4 nanocrystallites,
J. Mater. Sci. Lett., 21 (2002) 2135–2137.
- H.W.P. Carvalho, P. Hammer, S.H. Pulcinelli, C.V. Santilli, E.F.
Molina, Improvement of the photocatalytic activity of magnetite
by Mn-incorporation, Mater. Sci. Eng. B, 181 (2014) 64–69.
- H. Zhu, S. Zhang, Y.-X. Huang, L. Wu, S. Sun, Monodisperse
MxFe3−xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis
for oxygen reduction reaction, Nano Lett., 6 (2013)
2947–2951.
- X. Liang, Z. He, G. Wei, P. Liu, Y. Zhong, W. Tan, P. Du, J. Zhu,
H. He, J. Zhang, The distinct effects of Mn substitution on the
reactivity of magnetite in heterogeneous Fenton reaction and
Pb(II) adsorption, J. Colloid Interf. Sci., 426 (2014) 181–189.
- E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic
activity of ferrites under visible light: A review, Sep. Purif.
Technol., 87 (2012) 1–14.
- J. Zhu, S. Wei, M. Chen, H. Gu, S.B. Rapole, S. Pallavkar, T.C.
Ho, J. Hopper, Z. Guo, Magnetic nanocomposites for environmental
remediation, Adv. Powder Technol., 24 (2013) 459–467.
- A.A. Alqadami, Mu Naushad, M.A. Abdalla, M.R. Khan, Z.A.
Alothman, Adsorptive removal of toxic dye using Fe3O4−TSC
nanocomposite: Equilibrium, kinetic, and thermodynamic
studies, J. Chem. Eng. Data, 61(11) (2016) 3806–3813.
- P.K. Boruah, P. Borthakur, G. Darabdhara, C.K. Kamaja, I.
Karbhal, M.V. Shelke, P. Phukan, D. Saikia, M.R. Das, Sunlight
assisted degradation of dye molecules and reduction of toxic
Cr(VI) in aqueous medium using magnetically recoverable
Fe3O4/reduced graphene oxide nanocomposite, RSC Adv., 6
(2016) 11049–11063.
- S.K. Giri, N.N. Das, G.C. Pradhan, Synthesis and characterization
of magnetite nanoparticles using waste iron ore tailings
for adsorptive removal of dyes from aqueous solution, Colloid
Surf. A, 389 (2011) 43–49.
- JCPDS-Joint Committee on Powder Diffraction Standards 26,
1997.
- J. Wang, G. Liu, Y. Liu, C. Zhou, Y. Wu, Photocatalytic degradation
of methyl orange by Fe2O3-Fe3O4 nanoparticles and
Fe2O3-Fe3O4-montmorillonite nanocomposites, Clean – Soil Air
Water, 45 (2017) 1600472.
- Q. Feng, S. Li, W. Ma, H.-J. Fan, X. Wan, Y. Lei, Z. Chen, J. Yang,
B. Qin, Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites
with improved photocatalytic degradation methyl
orange under visible light irradiation, J. Alloys Compd., 737
(2018) 197–206.
- R.V. Solomon, I.S. Lydia, J.P. Merlin, P. Venuvanalingam,
Enhanced photocatalytic degradation of azo dyes using nano
Fe3O4, J. Iranian Chem. Soc., 9 (2012) 101–109.
- S. Bharati, D. Nataraj, D. Mangalraj, Y. Masuda, K. Senthil,
K. Yong, Highly mesoporous α-Fe2O3 nanostructures: preparation,
characterization and improved photocatalytic performance
towards Rhodamine B (RhB), J. Phys. D: Appl. Phys., 43
(2010) 015501.
- S.K. Giri, N. Das, Visible light induced photocatalytic decolourisation
of rhodamine B by magnetite nanoparticles synthesised
using recovered iron from waste iron ore tailings,
Desal. Water Treat., 57 (2016) 900–907.
- P. Yuan, D. Liu, M. Fan, D. Yang, R. Zhu, F. Ge, J. Zhu, H. He,
Removal of hexavalent chromium [Cr(VI)] from aqueous solutions
by the diatomite-supported/unsupported magnetite
nanoparticles, J. Hazard. Mater., 173 (2010) 614–621.
- N. Sezgin, A. Yalçın, Y. Köseoğlu, MnFe2O4 nanospinels as
potential sorbent for adsorption of chromium from industrial
wastewater, Desal. Water Treat., 57 (2016) 16495–16506.
- J. Hu, I.M.C. Lo, G. Chen, Comparative study of various magnetic
nanoparticles for Cr(VI) removal, Sep. Purific. Technol.,
56 (2007) 249–256.
- L. Yang, F. Wang, Y.-F. Meng, Q.-H. Tang, Z-Q. Liu, Fabrication
and characterization of manganese ferrite nanospheres as a
magnetic adsorbent of chromium, J. Nanomater., 2013 (2013)
1–5.
- G. Ren, X. Wang, P. Huang, B. Zhong, Z. Zhang, L. Yang, X.
Yang, Chromium(VI) adsorption from wastewater using
porous magnetite nanoparticles prepared from titanium residue
by a novel solid phase reduction method, Sci. Total Environ.,
607–608 (2017) 900–910.
- M.R. Lasheen, I.Y. El-Sherif, D.Y. Sabry, S.T. El-Wakeel, M.F.
El-Shahat, Removal and recovery of Cr(VI) by magnetite
nanoparticles, Desal. Water Treat., 52 (2014) 6464–6473.
- S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4)
nanoparticle synthesis and applications for lead (Pb2+) and
chromium (Cr6+) removal from water, J. Colloid Interf. Sci., 468
(2015) 334–346.
- S. Patnaik, K.K. Das, A. Mohanty, K.M. Parida, Enhanced photo
catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible
light irradiation, Catal. Today, 315 (2018) 52–56.
- I.O. Ali, A.G. Mostafa, Photocatalytic reduction of chromate
oxyanions on MMnFe2O4 (M=Zn, Cd) nanoparticles, Mater.
Sci. Semiconduct. Process, 33 (2015) 189–198.
- C.M. Ma, Y.S. Shen, P.H. Lin, Photoreduction of Cr(VI) ions in
aqueous solutions by UV/TiO2 photocatalytic processes, Int. J.
Photoenergy, 10 (2012), 1155–381971.