References

  1. M. Schorr, Desalination trends and technologies, In Tech, Rijeka, 2011.
  2. S.A. El-Agouz, A new process of desalination by air passing through seawater based on humidification de-humidification process, Energy, 35 (2010) 5108–5114.
  3. M. Mehrgoo, M. Amidpour, Constructal design and optimization of a direct contact humidification–dehumidification desalination unit, Desalination, 293 (2012) 69–77.
  4. A.E. Kabeel, E.M.S. El-Said, A hybrid solar desalination system of air humidification–dehumidification and water flashing evaporation: Part I. A numerical investigation, Desalination, 320 (2013) 56–72.
  5. A.E. Kabeel, E.M.S. El-Said, A hybrid solar desalination system of air humidification dehumidification and water flashing evaporation: A comparison among different configurations, Desalination, 330 (2013) 79–89.
  6. R. González-Bravo, J.M. Ponce-Ortega, M.M. El-Halwagi, Optimal design of water desalination systems involving waste heat recovery, Ind. Eng. Chem. Res., 56(7) (2017)1834–1847.
  7. S. Atilhan, A. Bin-Mahfouz, B. Batchelor, P. Linke, A. Abdel-Wahab, F. Nápoles-Rivera, A. Jiménez-Gutiérrez, M.M. El-Halwagi, A systems-integration approach to the optimization of macroscopic water desalination and distribution networks: a general framework applied to Qatar’s water resources, Clean Technol. Environ. Policy, 14(2) (2012) 161–171.
  8. R.E. Treybal, Mass transfer operations, McGraw-Hill, New York, 1980.
  9. W.L. McCabe, J.C. Smith, P. Harriott, Unit Operations of Chemical Engineering, McGraw-Hill, New York, 1993.
  10. M. Kutz, Heat Transfer Calculations, McGraw-Hill, 2004.
  11. M.H. Sharqawy, M.A. Antar, S.M. Zubair, A.M. Elbashir, Optimum thermal design of humidification dehumidification desalination systems. Desalination, 349 (2014) 10–21.
  12. H. Jaber, B.L. Webb, Design of cooling towers by the effectiveness-NTU method, ASME J. Heat Transfer, 111 (1989) 837–843.
  13. D.G. Kröger, Air-cooled heat exchangers and cooling towers. thermal-flow performance evaluation and design, PennWell Corporation, Tulsa, OK, 2004.
  14. N.K.H. Nawayseh, M.M. Farid, A. Omar, A. Sabirin, Solar desalination based on humidification process-II. Computer simulation, Energy Conver. Manage., 40 (1999) 1441–1461.
  15. M.M. Farid, S. Parekh, J.R. Selman, S. Al-Hallaj, Solar desalination with humidification-dehumidification cycle: mathematical modeling of the unit, Desalination, 151 (2003) 153–164.
  16. J. Hermosillo, A.A. Camilo, C.A. Estrada, Water desalination by air humidification: Mathematical model and experimental study, Solar Energy, 86 (2012) 1070–1076.
  17. A. Eslamimanesh, M.S. Hatamipour, Mathematical modeling of a direct contact humidification–dehumidification desalination process, Desalination, 237 (2009) 296–304.
  18. T. Mizushina, N. Hashimoto, M. Nakajima, Design of cooler condensers for gas-vapour mixtures, Chem. Eng. Sci., 9 (1959) 195–204.
  19. ASHRAE Handbook — Fundamentals Volume, ASHRAE 1791 Tullie Circle, Atlanta, GA, USA. 2001.
  20. P.F. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Fundamentals of heat and mass transfer, John Wiley and Sons, Danvers, MA, 2007.
  21. L.S. Lasdon, R.L. Fox, M.W. Ratner, Nonlinear optimization using the generalized reduced gradient method. Revue française d’automatique, informatique, recherche opérationnelle, Recherche opérationnelle, 8(V3) (1974) 73–103.
  22. K.R. Baker, Optimization Modeling with Spreadsheets, John Wiley and Sons, Hoboken, NJ, 2012.
  23. M. Graueer, G. Gruhn, L. Pollmer, Optimization of a complex plant by a GRG algorithm, Comp. Chem. Eng., 3(1–4) (1979) 597–602.
  24. R. Adamson, M. Hobbs, A. Silcock, G. Montague, Real time optimisation of industrial gas supply networks, IFAC-PapersOnLine, 48(8) (2015) 355–360.
  25. S. Farsad, A. Behzadmehr, Analysis of a solar desalination unit with humidification–dehumidification cycle using DoE method, Desalination, 278(1–3) (2011) 70–76.
  26. A.M.I. Mohamed, N.A. El-Minshawy, Theoretical investigation of solar humidification–dehumidification desalination system using parabolic trough concentrators, Energy Convers. Manage., 52(10) (2011) 3112–3119.
  27. A.E. Kabeel, M.H. Hamed, Z.M. Omara, S.W. Sharshir, Water desalination using a humidification-dehumidification technique — a detailed review, Nat. Resour., 4(3) (2013) 286–305.
  28. F. Abdel-Hady, M.M. El-Halwagi, M. Alghamdi, A.K. Mazher A. Alzahrani, Experimental study of humidification and dehumidification desalination process, Int. J. Eng. Technol., 10(2) (2018) 511–528.
  29. A.Y. Cenegel, M.A. Boles, Thermodynamics: An Engineering Approach, McGraw-Hill, New York, NY, 2015.
  30. C.J. khisty, J. Mohammadi, A.A. Amekudzi, Systems engineering with economics, Probability, and Statistics, J. Ross Publishing, Lauderdale, FL, 2012.
  31. Saudi electricity company official web site, https://www.se.com.sa/en-us/Customers/Pages/TariffRates.aspx
  32. G. Towler, R.K. Sinnott, Chemical engineering design: Principles, Practice and Economics of Plant and Process Design, Elsevier Butterworth-Heinemann: Burlington, MA, 2008.
  33. G.P. Rangaiah, Multi-objective optimization: Techniques and Applications in Chemical Engineering, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
  34. T. Rajaseenivasan, K. Srithar, An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy, Energy Convers. Manage., 139 (2017) 232–244.
  35. E. Deniz, S. Çınar, Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification, Energy Convers. Manage., 126 (2016) 12–19.
  36. H.A. Ahmed, I.M. Ismail, W.F. Saleh, M. Ahmed, Experimental investigation of humidification-dehumidification desalination system with corrugated packing in the humidifier, Desalination, 410 (2017) 19–29.
  37. S.A. El-Agouz, A new process of desalination by air passing through seawater based on humidification–dehumidification process, Energy, 35(12) (2010) 5108–5114.
  38. Z. Rahimi-Ahar, M.S. Hatamipour, Y. Ghalavand, Solar assisted modified variable pressure humidification-dehumidification desalination system, Energy Convers. Manage., 162 (2018) 321–330.
  39. M.H. Hamed, A.E. Kabeel, Z.M. Omara, S.W. Sharshir, Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit, Desalination, 358 (2015) 9–17.
  40. P. Behnam, M.B. Shafii, Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes, Desalination, 397 (2016) 30–37.
  41. M.B. Shafii, H. Jafargholi, M. Faegh, Experimental investigation of heat recovery in a humidification-dehumidification desalination system via a heat pump, Desalination, 437 (2018) 81–88.
  42. R.K. Sinnott, Coulson and Richardson’s Chemical Engineering, Chemical Engineering Design, Elsevier Butterworth-Heinemann, Oxford, UK, 2005.
  43. K.S. Wang, Handbook of air conditioning and refrigeration, McGraw-Hill, New York, NY, 2001.
  44. F. Kreith, The CRC handbook of thermal engineering, CRC Press, Boca Raton, FL, 2000.
  45. M. Mehrgoo, M. Amidpour, Derivation of optimal geometry of a multi-effect humidification–dehumidification desalination unit: A constructal design, Desalination, 281 (2011) 234–242.
  46. D.Q. Kern, Process Heat Transfer, McGraw Hill, Tokyo, 1965.
  47. J.M. Coulson, J.F. Richardson, Coulson and Richardson’s Chemical Engineering, Fluid Flow, Heat Transfer and Mass Transfer, Butterworth-Heinemann, Woburn, MA, 1999.
  48. A.E. Kabeel, E.M.S. El-Said, Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector, Desalination, 333 (2014) 10–22.