References

  1. E. Delyannis, Historic background of desalination and renewable energies, Sol. Energy, 75 (2003) 357–366.
  2. A.A. El-Sebaii, E. El-Bialy, Advanced designs of solar desalination systems: A review, Renew. Sustain. Energy Rev., 49 (2015) 1198–1212.
  3. V. Velmurugan, K.J.N. Kumar, T.N. Haq, K. Srithar, Performance analysis in stepped solar still for effluent desalination, Energy, 34 (2009) 1179–1186.
  4. M.L. Ali Ouar, M.H. Sellami, S.E. Meddour, R. Touahir, S. Guemari, K. Loudiyi, Experimental yield analysis of groundwater solar desalination system using absorbent materials, Groundwater Sustain. Dev., 5 (2017) 261–267.
  5. M.H. Sellami, T. Belkis, M.L. Ali Ouar, S.D. Meddour, H. Bouguettaia, K. Loudiyi, Improvement of solar still performance by covering absorber with blackened layers of sponge, Groundwater Sustain. Dev., 5 (2017) 111–117.
  6. P. Pal, P. Yadav, R. Dev, D. Singh, Performance analysis of modified basin type double slope multi–wick solar still, Desalination, 422 (2017) 68–82.
  7. S. Sangeeta, G.N. Tiwari, S.N. Rai, Parametric study of an inverted absorber double–effect solar distillation system, Desalination, 109 (1997) 177–186.
  8. S. Suneja, G.N. Tiwari, Parametric study of an inverted absorber triple effect solar still, Energ. Convers. Manage., 40 (1999) 1871–1884.
  9. S.A. Abdul-Wahab, Y.Y. Al-Hatmi, Study of the performance of the inverted solar still integrated with a refrigeration cycle, Procedia Eng., 33 (2012) 424–434.
  10. K.S. Reddy, K.R. Kumar, T.S. O’Donovan, T.K. Mallick, Performance analysis of an evacuated multi-stage solar water desalination system, Desalination, 288 (2012) 80–92.
  11. A.E. Kabeel, M. Abdelgaied, M. Mahgoub, The performance of a modified solar still using hot air injection and PCM, Desalination, 379 (2016) 102–107.
  12. A. Shukla, K. Kant, A. Sharma, Solar still with latent heat energy storage: A review, Innovative Food Sci. Emerg. Technol., 41 (2017) 34–46.
  13. H. Mousa, A.M. Gujarathi, Modeling and analysis the productivity of solar desalination units with phase change materials, Renew. Energy, 95 (2016) 225–232.
  14. H. Al-Hinai, M.S. Al-Nassri, B.A. Jubran, Parametric investigation of a double-effect solar still in comparison with a single- effect solar still, Desalination, 150(1) (2002) 75–83.
  15. S.A. Abdul-Wahab, R.A. Siddiqui, A.M. Al-Damkhi, H. Al-Hinai, Performance evaluation of a conventional and a double- glass cover solar stills, In: Thermal Engineering Research Developments, Nova Science Publishers, Inc., 2010, pp. 369– 391.
  16. S.A. Abdul-Wahab, A.M. Al-Damkhi, H. Al-Hinai, R. Dev, G.N. Tiwari, Experimental study of an inverted absorber solar still, Desal. Water Treat., 19 (2010) 249–254.
  17. R. Dev, S.A. Abdul-Wahab, G.N. Tiwari, Performance study of the inverted absorber solar still with water depth and total dissolved solid, Appl. Energy, 88 (2011) 252–264.
  18. S.A. Abdul-Wahab, Y.Y. Al-Hatmi, Performance evaluation of an inverted absorber solar still integrated with a refrigeration cycle and an inverted absorber solar still, Energy Sustain. Dev., 17 (2013) 642–648.
  19. A. Turner, S. White, G. Smith, A. Al Ghafri, A. Aziz, Z. Al-Suleimani, Water efficiency – a sustainable way forward for oman, Stockholm Water Symposium, August 21–27 (2005).
  20. H. Kotagama, M. Ahmed, M. Al-Haddabi, Cost evaluation of desalination and sewage treatment based on plants operated in Oman and use of software models, Desal. Water Treat., 57(19) (2016) 8649–8656.