References

  1. J.G. Lynam, G.I. Chow, C.J. Coronella, S.R. Hiibel, Ionic liquid and water separation by membrane distillation, Chem. Eng. J., 288 (2016) 557–561.
  2. H.C. Kim, J. Shin, S. Won, J.Y. Lee, S.K. Maeng, K.G. Song, Membrane distillation combined with an anaerobic moving bed biofilm reactor for treating municipal wastewater, Water Res., 71 (2015) 97–106.
  3. B. Mi, M. Elimelech, Chemical and physical aspects of organic fouling of forward osmosis membranes, J. Membr. Sci., 320 (2008) 292–302.
  4. A. Seidel, M. Elimelech, Coupling between chemical and physical interactions in natural organic matter (NOM) fouling of nanofiltration membranes: implications for fouling control, J. Membr. Sci., 203 (2002) 245–255.
  5. L.D. Tijing, Y.C. Woo, J.-S. Choi, S. Lee, S.-H. Kim, H.K. Shon, Fouling and its control in membrane distillation—A review, J. Membr. Sci., 475 (2015) 215–244.
  6. L.D. Nghiem, T. Cath, A scaling mitigation approach during direct contact membrane distillation, Sep. Purif. Technol., 80 (2011) 315–322.
  7. M. Gryta, M. Tomaszewska, J. Grzechulska, A. Morawski, Membrane distillation of NaCl solution containing natural organic matter, J. Membr. Sci., 181 (2001) 279–287.
  8. Y.-N. Wang, C.Y. Tang, Nanofiltration membrane fouling by oppositely charged macromolecules: investigation on flux behavior, foulant mass deposition, and solute rejection, Environ. Sci. Technol., 45 (2011) 8941–8947.
  9. H. Huachang, P. Wei, Z. Meijia, C. Jianrong, H. Yiming, W. Fangyuan, W. Xuexiang, Y. Haiying, L. Hongjun, Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications, Bioresource Technol., 146 (2013) 7–14.
  10. Q. Wang, Z. Wang, C. Zhu, X. Mei, Z. Wu, Assessment of SMP fouling by foulant-membrane interaction energy analysis, J. Membr. Sci., 446 (2013) 154–163.
  11. M. Zhang, W. Peng, J. Chen, Y. He, L. Ding, A. Wang, H. Lin, H. Hong, Y. Zhang, H. Yu, A new insight into membrane fouling mechanism in submerged membrane bioreactor: osmotic pressure during cake layer filtration, Water Res., 47 (2013) 2777–2786.
  12. C.J.V. Oss, Hydrophobicity of biosurfaces-Origin, quantitative determination and interaction energies, Colloids Surf., B, 5 (1995) 91–110.
  13. C.J.V. Oss, A. Docoslis, W. Wu, R.F. Giese, Influence of macroscopic and microscopic interactions on kinetic rate constants: I. Role of the extended DLVO theory in determining the kinetic adsorption constant of proteins in aqueous media, using von Smoluchowski’s approach, Colloids Surf., B, 14 (1999) 99–104.
  14. J.A. Brant, A.E. Childress, Assessing short-range membrane-colloid interactions using surface energetics, J. Membr. Sci., 203 (2002) 257–273.
  15. F. Lei, X.F. Li, G.C. Du, C. Jian, Adsorption and fouling characterization of Klebsiella oxytoca to microfiltration membranes, Process Biochem., 44 (2009) 1289–1292.
  16. V.T. Nguyen, T.W. Chia, M.S. Turner, N. Fegan, G.A. Dykes, Quantification of acid-base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella, J. Microbiol. Methods, 86 (2011) 89–96.
  17. L. Wang, R. Miao, X. Wang, Y. Lv, X. Meng, Y. Yang, D. Huang, L. Feng, Z. Liu, K. Ju, Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes: characterization from microforces, Environ. Sci. Technol., 47 (2013) 3708–3714.
  18. M. Gryta, Fouling in direct contact membrane distillation process, J. Membr. Sci., 325 (2008) 383–394.
  19. Y. Shim, H.-J. Lee, S. Lee, S.-H. Moon, J. Cho, Effects of natural organic matter and ionic species on membrane surface charge, Environ. Sci. Technol., 36 (2002) 3864–3871.
  20. E.J. Cohn, L.E. Strong, W.L. Hughes, D.J. Mulford, J.N. Ashworth, M. Melin, H.L. Taylor, Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids, J. Am. Chem. Soc., 68 (1946) 459–475.
  21. O. Wintersteiner, H.A. Abramson, The isoelectric point of insulin: electrical properties of adsorbed and crystalline insulin, J. Biol. Chem., 99 (1933) 741–753.
  22. K. Xiao, X. Wang, X. Huang, T.D. Waite, X. Wen, Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration, J. Membr. Sci., 373 (2011) 140–151.
  23. A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, A snake-based approach to accurate determination of both contact points and contact angles, Colloids Surf. A, 286 (2006) 92–103.
  24. J.M. Meinders, H.C.V.D. Mei, H.J. Busscher, Deposition efficiency and reversibility of bacterial adhesion under flow, J. Colloid Interf. Sci., 176 (1995) 329–341.
  25. L.G. Shen, Q. Lei, J.R. Chen, H.C. Hong, Y.M. He, H.J. Lin, Membrane fouling in a submerged membrane bioreactor: Impacts of floc size, Chem. Eng. J., 269 (2015) 328–334.
  26. M. Zhang, B.Q. Liao, X. Zhou, Y. He, H. Hong, H. Lin, J. Chen, Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor, Bioresour. Technol., 175 (2015) 59–67.
  27. P. Sharma, K.H. Rao, Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry, Adv. Colloid Interface Sci., 98 (2002) 341–463.
  28. Y. Zhao, F. Li, M.T. Carvajal, M.T. Harris, Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier, J. Colloid Interface Sci., 332 (2009) 345–353.
  29. B. Bjellqvist, G.J. Hughes, C. Pasquali, N. Paquet, F. Ravier, J.C. Sanchez, S. Frutiger, D. Hochstrasser, The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences, Electrophoresis, 14 (1993) 1023–1031.
  30. J.P. Fuenzalida, P.K. Nareddy, I. Moreno-Villoslada, B.M. Moerschbacher, M.J. Swamy, S. Pan, M. Ostermeier, F.M. Goycoolea, On the role of alginate structure in complexing with lysozyme and application for enzyme delivery, Food Hydrocolloid., 53 (2016) 239–248.
  31. C.W. Carr, Studies on the binding of small ions in protein solutions with the use of membrane electrodes. II. The binding of calcium ions in solutions of bovine serum albumin, Arch. Biochem. Biophys., 43 (1953) 147–156.
  32. S. Damodaran, Functional properties, Food proteins: Properties and characterization, 1996, pp. 167–234.
  33. R. Kuroki, Y. Taniyama, C. Seko, H. Nakamura, M. Kikuchi, M. Ikehara, Design and creation of a Ca2+ binding site in human lysozyme to enhance structural stability, Proc. Natl. Acad. Sci., 86 (1989) 6903–6907.
  34. K. Nitta, H. Tsuge, S. Sugai, K. Shimazaki, The calcium-binding property of equine lysozyme, FEBS Lett., 223 (1987) 405–408.
  35. W.J. Leo, A.J. McLoughlin, D.M. Malone, Effects of sterilization treatments on some properties of alginate solutions and gels, Biotechnol. Progr., 6 (1990) 51–53.
  36. K. Katsoufidou, S. Yiantsios, A. Karabelas, Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing, J. Membr. Sci., 300 (2007) 137– 146.
  37. H. Zheng, Q. Zhang, K. Jiang, H. Zhang, J. Wang, Critical behavior of viscosity for alginate solutions near the gelation threshold induced by cupric ions, J. Chem. Phys., 105 (1996) 7746–7752.
  38. G.T. Grant, E.R. Morris, D.A. Rees, P.J. Smith, D. Thom, Biological interactions between polysaccharides and divalent cations: the egg-box model, FEBS Lett., 32 (1973) 195–198.
  39. G. Naidu, S. Jeong, S.-J. Kim, I.S. Kim, S. Vigneswaran, Organic fouling behavior in direct contact membrane distillation, Desalination, 347 (2014) 230–239.
  40. S. Lee, W.S. Ang, M. Elimelech, Fouling of reverse osmosis membranes by hydrophilic organic matter: implications for water reuse, Desalination, 187 (2006) 313–321.
  41. Y. Ding, Y. Tian, Z. Li, H. Wang, L. Chen, Interaction energy evaluation of the role of solution chemistry and organic foulant composition on polysaccharide fouling of microfiltration membrane bioreactors, Chem. Eng. Sci., 104 (2013) 1028–1035.
  42. L. Chen, Y. Tian, C.-q. Cao, J. Zhang, Z.-n. Li, Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: role of the reconstructed membrane topology, Water Res., 46 (2012) 2693–2704.
  43. C. Liu, L. Chen, L. Zhu, Fouling behavior of lysozyme on different membrane surfaces during the MD operation: An especial interest in the interaction energy evaluation, Water Res., 119 (2017) 33–46.
  44. J.A. Redman, S.L. Walker, M. Elimelech, Bacterial adhesion and transport in porous media: Role of the secondary energy minimum, Environ. Sci. Technol., 38 (2004) 1777–1785.
  45. E.M. Hoek, S. Bhattacharjee, M. Elimelech, Effect of membrane surface roughness on colloid-membrane DLVO interactions, Langmuir, 19 (2003) 4836–4847.
  46. Y. Ding, Y. Tian, Z. Li, H. Wang, L. Chen, Microfiltration (MF) membrane fouling potential evaluation of protein with different ion strengths and divalent cations based on extended DLVO theory, Desalination, 331 (2013) 62–68.
  47. E.R. Morris, A.N. Cutler, S.B. Ross-Murphy, D.A. Rees, J. Price, Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions, Carbohydr. Polym., 1 (1981) 5–21.