References

  1. H.P. Garg, H.S. Mann, Effect of climatic, operational and design parameters on the year round performance of single-sloped and double-sloped solar still under Indian arid zone conditions, Solar Energy, 18 (1976) 159–163.
  2. A.K. Rajvanshi, Effect of various dyes on solar distillation, Solar Energy, 27 (1981) 51–65.
  3. G.M. Zaki, A.M. Radhwan, A.O. Balbeid, Analysis of assisted coupled solar still, Solar Energy, 27 (1981) 51–65.
  4. A. Delyannis, The Patmos solar distillation plant, Solar Energy, 11 (1968) 113–115.
  5. V.A. Baum, R. Bairamov, Prospects of solar stills in Turkmenia, Solar Energy, 10 (1966) 38–40.
  6. K. Srithar, T. Rajaseenivasan, Recent fresh water augmentation techniques in solar still and HDH desalination – a review, Renew. Sustain. Energy Rev., 82 (2018) 629–644.
  7. M. Chandrashekara, A. Yadav, Water desalination system using solar heat: a review, Renew. Sustain. Energy Rev., 67 (2017) 1308–1330.
  8. P. Behnam, M.B. Shafii, Examination of a solar desalination system equipped with an air bubble column humidifier, evacuated tube collectors and thermosyphon heat pipes, Desalination, 397 (2016) 30–37.
  9. C. Muthusamy, K. Srithar, Energy and exergy analysis for a humidification–dehumidification desalination system integrated with multiple inserts, Desalination, 367 (2015) 49–59.
  10. S. Malek, Experimental analysis of solar still with external condenser, Int. J. Recent Innov. Trends Comput. Commun. (IJRITCC), 2 (2014) 983–986.
  11. E.W. Tow, J.H. Lienhard V, Experiments and modeling of bubble column dehumidifier performance, Int. J. Therm. Sci., 80 (2014) 65–75.
  12. A.M. Shawesh, A Study of Heat and Mass Transfer in Dual Water Heater, Thesis, http://digitool.Library.McGill.CA:80/R/-?func=dbin-jump-full&object_id=20519&silo_library=GEN01.
  13. K. Zhani, H. Ben Bacha, T. Damak, Modeling and experimental validation of a humidification and dehumidification desalination unit solar part, Desal. Water Treat., 5 (2011) 3159–3169.
  14. K. Zhani, H. Ben Bacha, Modeling, simulation and experimental validation of a pad humidifier used in solar desalination process, Desal. Water Treat., 7–9 (2013) 1477–1486.
  15. T. Damak, Modeling, Estimation and Control of Biotechnological Processes of Hyperbolic Type, PhD Thesis, Paul Sabatier University, Toulouse, France, 1994.
  16. R.K. Srivastava, B. Joseph, Reduced-order model for separation columns. V. Selection of collocation points, Comput. Chem. Eng., 9 (1985) 601–613.
  17. M. Ben Amara, Study of Water Desalination by Multi-stage Humidification-Dehumidification, PhD Thesis, Faculty of Sciences of Tunis, University of Tunis El-manar, Tunis, 2005.
  18. E. Chafik, A new seawater desalination process using solar energy, Desalination, 153 (2002) 25–37.
  19. J. Orfi, M. Laplante, H. Marmouch, N. Galanis, B. Benhamou, S. Ben Nasrallah, C.T. Nguyen, Experimental and theoretical study of a humidification–dehumidification water desalination system using solar energy, Desalination, 168 (2004) 151–159.
  20. Agricultural University of Athens, 10th Deliverable: Experimental optimization of humidifiers design of an optimized humidifier prototype, EU Contract No. IC18-CT98-0265, January 2001.
  21. M. Ben Amara, A. Ben Ezzine, I. Houcine, A.A. Guizani, M. Maalej, Development and Characterization of Flat Air Solar Collectors Used in a Process of Desalination by Humidification– Dehumidification of Air, Proc. 4th Tunisian Days on Flows and Transfers JTET 2002, Hammamet, 2 December, 2002, pp. III.21–III.28.
  22. S. Yanniotis, K. Xerodemas, Air humidification for seawater desalination, Desalination, 158 (2003) 313–319.
  23. N.C. Barford, Experimental measurements: precision, error and truth, 2nd ed., John Wiley & Sons, New York, 1990.
  24. R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1 (1988) 3–17.