References
- Y. Qiao, X.J. Liang, Y.B. Wang, Application and comparison
study of two models for groundwater depth prediction, Water
Saving Irrig., 3 (2014) 45–53.
- N. Zhang, C. Xiao, B. Liu, Groundwater depth predictions
by GSM, RBF, and ANFIS models: a comparative assessment,
Arab. J. Geosci., 10 (2017) 189.
- Y. Choi, Y. Choi, T.H. Le, S. Shin, D. Kwon, Groundwater levels
estimation and forecasting by integrating precipitation-based
period-dividing algorithm and response surface methodology,
Desalin. Water Treat., 54 (2015) 1270–1280.
- S. Mohanty, M.K. Jha, S.K. Raul, R.K. Panda, K.P. Sudheer, Using
artificial neural network approach for simultaneous forecasting
of weekly groundwater levels at multiple sites, Water Resour.
Manage., 29 (2015) 5521–5532.
- K.A. Mahallawi, J. Mania, A. Hani, Using of neural networks
for the prediction of nitrate groundwater contamination in rural
and agricultural areas, Environ. Earth Sci., 65 (2012) 917–928.
- S. Maiti, R.K. Tiwari, A comparative study of artificial neural
networks, Bayesian neural networks and adaptive neuro-fuzzy
inference system in groundwater level prediction, Environ.
Earth Sci., 71 (2014) 3147–3160.
- H.J. Yu, X.H. Wen, Q. Feng, R.C. Deo, J.H. Si, M. Wu,
Comparative study of hybrid-wavelet artificial intelligence
models for monthly groundwater depth forecasting in extreme
arid regions, Northwest China, Water Resour. Manage., 32
(2018) 301–323.
- Z.P. Yang, W.X Lu, P. Li, Application of time-series model
to predict groundwater regime, J. Hydraul. Eng., 12 (2005)
1475–1479.
- B. Sheng, M. Liu, L,M. Huang, Grey self-memory model and its
application in the prediction of groundwater depth in Hotan,
Xinjiang, J. Northwest A&F Univ. (Nat. Sci. Ed.), 11 (2006) 223–226.
- R.F. Li, B. Sheng, J.K. Zhang, Self-memory model for predicting
groundwater depth series with periodical fluctuation, Trans.
CSAE, 21 (2005) 34–36.
- A. Lapedes, R. Farber, Nonlinear Signal Processing Using
Neural Networks: Prediction, and System Modelling, LA-VR-87-2662, IEEE International Conference on Neural Networks,
Los Alamos, USA, 1987.
- N.E. Huang, Z. Shen, S.R. Long, The empirical mode
decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis, Proc Royal Soc. Lond A, 454
(1998) 903–995.
- Y.H. Wang, D.P. Yue, Q. Yu, Dynamic prediction of groundwater
depth in Dengkou County based on EMD, J. Northwest
Forestry Univ., 32 (2017) 53–59.
- S.L. Zhao, Y. Liu, S.Q. Li, Utilizing BP neural network to forecast
groundwater regime, J. Agric. Univ. Hebei, 25 (2002) 206–207.
- D. Labate, F. La Foresta, G. Occhiuto, Empirical mode
decomposition vs. wavelet decomposition for the extraction
of respiratory signal from single-channel ECG: a comparison,
IEEE Sens. J. 13 (2013).2666–2674.
- W.Y. Duan, L.M. Huang, Y. Han, A hybrid EMD-AR model
for nonlinear and non-stationary wave forecasting, J. Zhejiang
Univ. Sci. A, 17 (2016) 115–127.
- C.L. Yeh, H.C. Chang, C.H. Wu, Extraction of single-trial cortical
beta oscillatory activities in EEG signals using empirical mode
decomposition, Biomed. Eng., 25 (2010) 3–17.
- J.L. Elman, Finding structure in time, Cogn. Sci., 14 (1990)
179–211.
- P.S. Sastry, G. Santharam, K.P. Unnikrishnan, Memory neuron
networks for identification and control of dynamic systems,
IEEE Trans. Neural Netw., 5 (1994) 306–319.
- C.J. Yu, Y.L. Liu, H.Y. Xiang, M.J. Zhang, Data miningassisted
short-term wind speed forecasting by wavelet packet
decomposition and Elman neural network, J. Wind Eng. Ind.
Aerodyn., 175 (2018) 136–143.
- X.M. Li, T.Y. Zhao, J.L. Zhang, Predication control for indoor
temperature time-delay using Elman neural network in variable
air volume system, Energy Build., 154 (2017) 545–552.
- A.D. Buthina, A. Iftikhar, H. Muhammad, Improving the
security in healthcare information system through Elman
neural network based classifier, J. Med. Imaging Health Inform.,
7 (2017) 1429–1435.
- K. Krzysztof, S. Aleksandra, K. Rafal, Multisensor data fusion
using Elman neural networks, Appl. Math. Comput., 319 (2018)
236–244.
- H. Liu, X.W. Mi, Y.F. Li, Wind speed forecasting method based
on deep learning strategy using empirical wavelet transform,
long short term memory neural network and Elman neural
network, Energy Convers. Manage., 156 (2018) 498–514.