References

  1. Y. Qiao, X.J. Liang, Y.B. Wang, Application and comparison study of two models for groundwater depth prediction, Water Saving Irrig., 3 (2014) 45–53.
  2. N. Zhang, C. Xiao, B. Liu, Groundwater depth predictions by GSM, RBF, and ANFIS models: a comparative assessment, Arab. J. Geosci., 10 (2017) 189.
  3. Y. Choi, Y. Choi, T.H. Le, S. Shin, D. Kwon, Groundwater levels estimation and forecasting by integrating precipitation-based period-dividing algorithm and response surface methodology, Desalin. Water Treat., 54 (2015) 1270–1280.
  4. S. Mohanty, M.K. Jha, S.K. Raul, R.K. Panda, K.P. Sudheer, Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites, Water Resour. Manage., 29 (2015) 5521–5532.
  5. K.A. Mahallawi, J. Mania, A. Hani, Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas, Environ. Earth Sci., 65 (2012) 917–928.
  6. S. Maiti, R.K. Tiwari, A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction, Environ. Earth Sci., 71 (2014) 3147–3160.
  7. H.J. Yu, X.H. Wen, Q. Feng, R.C. Deo, J.H. Si, M. Wu, Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, Northwest China, Water Resour. Manage., 32 (2018) 301–323.
  8. Z.P. Yang, W.X Lu, P. Li, Application of time-series model to predict groundwater regime, J. Hydraul. Eng., 12 (2005) 1475–1479.
  9. B. Sheng, M. Liu, L,M. Huang, Grey self-memory model and its application in the prediction of groundwater depth in Hotan, Xinjiang, J. Northwest A&F Univ. (Nat. Sci. Ed.), 11 (2006) 223–226.
  10. R.F. Li, B. Sheng, J.K. Zhang, Self-memory model for predicting groundwater depth series with periodical fluctuation, Trans. CSAE, 21 (2005) 34–36.
  11. A. Lapedes, R. Farber, Nonlinear Signal Processing Using Neural Networks: Prediction, and System Modelling, LA-VR-87-2662, IEEE International Conference on Neural Networks, Los Alamos, USA, 1987.
  12. N.E. Huang, Z. Shen, S.R. Long, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc Royal Soc. Lond A, 454 (1998) 903–995.
  13. Y.H. Wang, D.P. Yue, Q. Yu, Dynamic prediction of groundwater depth in Dengkou County based on EMD, J. Northwest Forestry Univ., 32 (2017) 53–59.
  14. S.L. Zhao, Y. Liu, S.Q. Li, Utilizing BP neural network to forecast groundwater regime, J. Agric. Univ. Hebei, 25 (2002) 206–207.
  15. D. Labate, F. La Foresta, G. Occhiuto, Empirical mode decomposition vs. wavelet decomposition for the extraction of respiratory signal from single-channel ECG: a comparison, IEEE Sens. J. 13 (2013).2666–2674.
  16. W.Y. Duan, L.M. Huang, Y. Han, A hybrid EMD-AR model for nonlinear and non-stationary wave forecasting, J. Zhejiang Univ. Sci. A, 17 (2016) 115–127.
  17. C.L. Yeh, H.C. Chang, C.H. Wu, Extraction of single-trial cortical beta oscillatory activities in EEG signals using empirical mode decomposition, Biomed. Eng., 25 (2010) 3–17.
  18. J.L. Elman, Finding structure in time, Cogn. Sci., 14 (1990) 179–211.
  19. P.S. Sastry, G. Santharam, K.P. Unnikrishnan, Memory neuron networks for identification and control of dynamic systems, IEEE Trans. Neural Netw., 5 (1994) 306–319.
  20. C.J. Yu, Y.L. Liu, H.Y. Xiang, M.J. Zhang, Data miningassisted short-term wind speed forecasting by wavelet packet decomposition and Elman neural network, J. Wind Eng. Ind. Aerodyn., 175 (2018) 136–143.
  21. X.M. Li, T.Y. Zhao, J.L. Zhang, Predication control for indoor temperature time-delay using Elman neural network in variable air volume system, Energy Build., 154 (2017) 545–552.
  22. A.D. Buthina, A. Iftikhar, H. Muhammad, Improving the security in healthcare information system through Elman neural network based classifier, J. Med. Imaging Health Inform., 7 (2017) 1429–1435.
  23. K. Krzysztof, S. Aleksandra, K. Rafal, Multisensor data fusion using Elman neural networks, Appl. Math. Comput., 319 (2018) 236–244.
  24. H. Liu, X.W. Mi, Y.F. Li, Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network, Energy Convers. Manage., 156 (2018) 498–514.