References

  1. J.W. Park, S.S. Lee, D.K. Choi, Y.W. Lee, Y.M. Kim, Adsorption equilibria of toluene, dichloromethane, and trichloroethylene onto activated carbon fiber, J. Chem. Eng. Data, 47 (2002) 980–983.
  2. L.C. Toledo, A.C.B. Silva, R. Augusti, R.M. Lago, Application of Fenton’s reagent to regenerate activated carbon saturated with organochloro compounds, Chemosphere, 50 (2003) 1049–1054.
  3. A. Cabrera-Codony, R. Gonzalez-Olmos, M.J. Martín, Regeneration of siloxane-exhausted activated carbon by advanced oxidation processes, J. Hazard. Mater., 285 (2015) 501–508.
  4. S.G. Huling, E. Kan, C. Caldwell, S. Park, Fenton-driven chemical regeneration of MTBE-spent granular activated carbon – a pilot study, J. Hazard. Mater., 205–206 (2012) 55–62.
  5. C. Liang, Y.T. Lin, W.H. Shin, Persulfate regeneration of trichloroethylene spent activated carbon, J. Hazard. Mater., 168 (2009) 187–192.
  6. S. Ko, M. Crimi, B.K. Marvin, V. Holmes, S.G. Huling, Comparative study on oxidative treatments of NAPL containing chlorinated ethanes and ethenes using hydrogen peroxide and persulfate in soils, J. Environ. Manage., 108 (2012) 42–48.
  7. J. Zhao, J. Yang, J. Ma, Mn(II)-enhanced oxidation of benzoic acid by Fe(III)/H2O2 system, Chem. Eng. J., 239 (2014) 171–177.
  8. I. Innocenti, I. Verginelli, F. Massetti, D. Piscitelli, R. Gavasci, R. Baciocchi, Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process, Sci. Total Environ., 485–486 (2014) 726–738.
  9. K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heatassisted persulfate oxidation of methyl tert-butyl ether (MTBE), Chemosphere, 49 (2002) 413–420.
  10. M. Usman, P. Faure, K. Hanna, M. Abdelmoula, C. Ruby, Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination, Fuel, 96 (2012) 270–276.
  11. J. Sahl, J. Munakata‐Marr, The effects of in situ chemical oxidation on microbiological processes: a review, Remediation J., 16 (2006) 57–70.
  12. C. Sirguey, P.T.S. e Silva, C. Schwartz, M.-O. Simonnot, Impact of chemical oxidation on soil quality, Chemosphere, 72 (2008) 282–289.
  13. W. Chu, Y.R. Wang, H.F. Leung, Synergy of sulfate and hydroxyl radicals in UV/S2O82−/H2O2 oxidation of iodinated X-ray contrast medium iopromide, Chem. Eng. J., 178 (2011) 154–160.
  14. C. Liang, M.-C. Lai, Trichloroethylene degradation by zero valent iron activated persulfate oxidation, Environ. Eng. Sci., 25 (2008) 1071–1077.
  15. C. Liang, Y.-Y. Guo, Y.-C. Chien, Y.-J. Wu, Oxidative degradation of MTBE by pyrite-activated persulfate: proposed reaction pathways, Ind. Eng. Chem. Res., 49 (2010) 8858–8864.
  16. X.-R. Xu, X.-Y. Li, X.-Z. Li, H.-B. Li, Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes, Sep. Purif. Technol., 68 (2009) 261–266.
  17. Y. Rao, L. Qu, H. Yang, W. Chu, Degradation of carbamazepine by Fe (II)-activated persulfate process, J. Hazard. Mater., 268 (2014) 23–32.
  18. C. Liang, Z.-S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106–113.
  19. A. Ghauch, G. Ayoub, S. Naim, Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution, Chem. Eng. J., 228 (2013) 1168–1181.
  20. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple, Chemosphere, 55 (2004) 1213–1223.
  21. C. Liang, C.-F. Huang, N. Mohanty, C.-J. Lu, R.M. Kurakalva, Hydroxypropyl-β- cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene, Ind. Eng. Chem. Res., 46 (2007) 6466–6479.
  22. N. Yan, F. Liu, W. Huang, Interaction of oxidants in siderite catalyzed hydrogen peroxide and persulfate system using trichloroethylene as a target contaminant, Chem. Eng. J., 219 (2013) 149–154.
  23. P.A. Block, R.A. Brown, D. Robinson, Novel Activation Technologies for Sodium Persulfate In Situ Chemical Oxidation, in: Proc. Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, 2004.
  24. N. Dulova, E. Kattel, M. Trapido, Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: the effect of citric acid addition, Chem. Eng. J., 318 (2016) 254–263.
  25. D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 1984.
  26. W. Wang, Y. Xiao, X. Wu, J. Zhang, Optimization of laser-assisted glass frit bonding process by response surface methodology, Optics Laser Technol., 77 (2016) 111–115.
  27. S.A. Heleno, P. Diz, M. Prieto, L. Barros, A. Rodrigues, M.F. Barreiro, I.C. Ferreira, Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction, Food Chem., 197 (2016) 1054–1063.
  28. D.B. Mawhinney, R.B. Young, B.J. Vanderford, T. Borch, S.A. Snyder, Artificial sweetener sucralose in U.S. drinking water systems, Environ. Sci. Technol., 45 (2011) 8716–8722.
  29. M.E. Lindsey, M.A. Tarr, Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide, Chemosphere, 41 (2000) 409–417.
  30. W.R. Haag, C.D. Yao, Rate constants for reaction of hydroxyl radicals with several drinking water contaminants, Environ. Sci. Technol., 26 (1992) 1005–1013.
  31. C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
  32. J.S. Mattson, H.B. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, M. Dekker, New York, 1971.
  33. B. Acherjee, D. Misra, D. Bose, K. Venkadeshwaran, Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology, Optics Laser Technol., 41 (2009) 956–967.