References
- J.W. Park, S.S. Lee, D.K. Choi, Y.W. Lee, Y.M. Kim, Adsorption
equilibria of toluene, dichloromethane, and trichloroethylene
onto activated carbon fiber, J. Chem. Eng. Data, 47 (2002)
980–983.
- L.C. Toledo, A.C.B. Silva, R. Augusti, R.M. Lago, Application of
Fenton’s reagent to regenerate activated carbon saturated with
organochloro compounds, Chemosphere, 50 (2003) 1049–1054.
- A. Cabrera-Codony, R. Gonzalez-Olmos, M.J. Martín,
Regeneration of siloxane-exhausted activated carbon by
advanced oxidation processes, J. Hazard. Mater., 285 (2015)
501–508.
- S.G. Huling, E. Kan, C. Caldwell, S. Park, Fenton-driven
chemical regeneration of MTBE-spent granular activated
carbon – a pilot study, J. Hazard. Mater., 205–206 (2012) 55–62.
- C. Liang, Y.T. Lin, W.H. Shin, Persulfate regeneration of
trichloroethylene spent activated carbon, J. Hazard. Mater., 168
(2009) 187–192.
- S. Ko, M. Crimi, B.K. Marvin, V. Holmes, S.G. Huling,
Comparative study on oxidative treatments of NAPL containing
chlorinated ethanes and ethenes using hydrogen peroxide and
persulfate in soils, J. Environ. Manage., 108 (2012) 42–48.
- J. Zhao, J. Yang, J. Ma, Mn(II)-enhanced oxidation of benzoic
acid by Fe(III)/H2O2 system, Chem. Eng. J., 239 (2014) 171–177.
- I. Innocenti, I. Verginelli, F. Massetti, D. Piscitelli, R. Gavasci,
R. Baciocchi, Pilot-scale ISCO treatment of a MtBE contaminated
site using a Fenton-like process, Sci. Total Environ., 485–486
(2014) 726–738.
- K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heatassisted
persulfate oxidation of methyl tert-butyl ether (MTBE),
Chemosphere, 49 (2002) 413–420.
- M. Usman, P. Faure, K. Hanna, M. Abdelmoula, C. Ruby,
Application of magnetite catalyzed chemical oxidation (Fenton-like
and persulfate) for the remediation of oil hydrocarbon
contamination, Fuel, 96 (2012) 270–276.
- J. Sahl, J. Munakata‐Marr, The effects of in situ chemical
oxidation on microbiological processes: a review, Remediation
J., 16 (2006) 57–70.
- C. Sirguey, P.T.S. e Silva, C. Schwartz, M.-O. Simonnot, Impact
of chemical oxidation on soil quality, Chemosphere, 72 (2008)
282–289.
- W. Chu, Y.R. Wang, H.F. Leung, Synergy of sulfate and hydroxyl
radicals in UV/S2O82−/H2O2 oxidation of iodinated X-ray contrast
medium iopromide, Chem. Eng. J., 178 (2011) 154–160.
- C. Liang, M.-C. Lai, Trichloroethylene degradation by zero
valent iron activated persulfate oxidation, Environ. Eng. Sci., 25
(2008) 1071–1077.
- C. Liang, Y.-Y. Guo, Y.-C. Chien, Y.-J. Wu, Oxidative degradation
of MTBE by pyrite-activated persulfate: proposed reaction
pathways, Ind. Eng. Chem. Res., 49 (2010) 8858–8864.
- X.-R. Xu, X.-Y. Li, X.-Z. Li, H.-B. Li, Degradation of melatonin
by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes,
Sep. Purif. Technol., 68 (2009) 261–266.
- Y. Rao, L. Qu, H. Yang, W. Chu, Degradation of carbamazepine
by Fe (II)-activated persulfate process, J. Hazard. Mater., 268
(2014) 23–32.
- C. Liang, Z.-S. Wang, C.J. Bruell, Influence of pH on persulfate
oxidation of TCE at ambient temperatures, Chemosphere, 66
(2007) 106–113.
- A. Ghauch, G. Ayoub, S. Naim, Degradation of sulfamethoxazole
by persulfate assisted micrometric Fe0 in aqueous solution,
Chem. Eng. J., 228 (2013) 1168–1181.
- C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate
oxidation for in situ remediation of TCE. I. Activated by ferrous
ion with and without a persulfate–thiosulfate redox couple,
Chemosphere, 55 (2004) 1213–1223.
- C. Liang, C.-F. Huang, N. Mohanty, C.-J. Lu, R.M. Kurakalva,
Hydroxypropyl-β-
cyclodextrin-mediated iron-activated persulfate
oxidation of trichloroethylene and tetrachloroethylene, Ind.
Eng. Chem. Res., 46 (2007) 6466–6479.
- N. Yan, F. Liu, W. Huang, Interaction of oxidants in siderite
catalyzed hydrogen peroxide and persulfate system using
trichloroethylene as a target contaminant, Chem. Eng. J., 219
(2013) 149–154.
- P.A. Block, R.A. Brown, D. Robinson, Novel Activation
Technologies for Sodium Persulfate In Situ Chemical Oxidation,
in: Proc. Fourth International Conference on the Remediation of
Chlorinated and Recalcitrant Compounds, 2004.
- N. Dulova, E. Kattel, M. Trapido, Degradation of naproxen
by ferrous ion-activated hydrogen peroxide, persulfate and
combined hydrogen peroxide/persulfate processes: the effect of
citric acid addition, Chem. Eng. J., 318 (2016) 254–263.
- D.C. Montgomery, Design and Analysis of Experiments, Wiley,
New York, 1984.
- W. Wang, Y. Xiao, X. Wu, J. Zhang, Optimization of laser-assisted
glass frit bonding process by response surface methodology,
Optics Laser Technol., 77 (2016) 111–115.
- S.A. Heleno, P. Diz, M. Prieto, L. Barros, A. Rodrigues,
M.F. Barreiro, I.C. Ferreira, Optimization of ultrasound-assisted
extraction to obtain mycosterols from Agaricus bisporus L.
by response surface methodology and comparison with
conventional Soxhlet extraction, Food Chem., 197 (2016)
1054–1063.
- D.B. Mawhinney, R.B. Young, B.J. Vanderford, T. Borch, S.A.
Snyder, Artificial sweetener sucralose in U.S. drinking water
systems, Environ. Sci. Technol., 45 (2011) 8716–8722.
- M.E. Lindsey, M.A. Tarr, Quantitation of hydroxyl radical
during Fenton oxidation following a single addition of iron and
peroxide, Chemosphere, 41 (2000) 409–417.
- W.R. Haag, C.D. Yao, Rate constants for reaction of hydroxyl
radicals with several drinking water contaminants, Environ.
Sci. Technol., 26 (1992) 1005–1013.
- C. Moreno-Castilla, Adsorption of organic molecules from
aqueous solutions on carbon materials, Carbon, 42 (2004) 83–94.
- J.S. Mattson, H.B. Mark, Activated Carbon: Surface Chemistry
and Adsorption from Solution, M. Dekker, New York, 1971.
- B. Acherjee, D. Misra, D. Bose, K. Venkadeshwaran, Prediction
of weld strength and seam width for laser transmission welding
of thermoplastic using response surface methodology, Optics
Laser Technol., 41 (2009) 956–967.