References

  1. P. Barnes, E. Griner, K. Fann, R. Nahin, Complementary and alternative medicine use among adults: United States, 2002, Seminars in Integrative Medicine, 2 (2004) 54–71.
  2. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environ. Int., 35 (2009) 402–417.
  3. S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water, Environ. Int., 35 (2009) 803–814.
  4. L. Santos, A.N. Araujo, A. Fachini, A. Pena, C.D. Matos, M.C. Montenegro, Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, J. Hazard. Mater., 175 (2010) 45–95.
  5. W. Sim, J. Lee, E. Lee, S. Shin, S. Hwang, J. Oh, Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures, Chemosphere, 82 (2011) 179–186.
  6. E. Touraud, B. Roig, J. Sumpter, C. Coetsier, Drug residues and endocrine disruptors in drinking water: risk for humans?, Int. J. Hygiene Environ. Health, 214 (2011) 437–441.
  7. L. Heckmann, A. Callaghan, H. Hooper, R. Connon, H.T. Hutchinson, J.S. Maund, M.S. Richard, Chronic toxicity of ibuprofen to Daphnia magna: effects on life history traits and population dynamics, Toxicol. Lett., 172 (2007) 137–145.
  8. A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal. Chem., 387 (2007) 1225–1234.
  9. T. Heberer, Tracking persistent pharmaceutical residues from municipal sewage to drinking water, J. Hydrology, 226 (2002) 175–189.
  10. S. Kim, J. Cho, I. Kim, B. Vanderford, S. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters, Water Res., 41 (2007) 1013–1021.
  11. G. Boyd, H. Reemtsma, D. Grimm, S. Mitera, Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA, and Ontario, Canada, Sci. Total Environ., 311 (2003) 135–149.
  12. C. Yu, K. Chu, Occurrence of pharmaceuticals and personal care products along the West Prong Little Pigeon River in east Tennessee, USA, Chemosphere, 75 (2009) 1281–1286.
  13. P. Roberts, K. Thomas, The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment, Sci. Total Environ., 356 (2006) 143–153.
  14. H.R. Buser, T. Poiger, M.D. Muller, Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater, Environ. Sci. Technol., 33 (1999) 2529–2535.
  15. C. Miege, J.M. Choubert, L. Ribeiro, M. Eusebe, M. Coquery, Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions—conception of a database and first results, Water Sci. Technol., 57 (2007) 49–56.
  16. S. Snyder, S. Adham, A. Redding, F. Cannon, J. Carolis, J. Oppenheimer, E. Wert, Y. Yoon, Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, 202 (2006) 156–181.
  17. R. Giri, S. Ozaki, H. Ota, R. Takanami, S. Taniguchi, Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques, Int. J. Environ. Sci. Technol., 7 (2010) 251–260.
  18. H. Hossaini, G. Moussavi, M. Farrokhi, The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water, Water Res., 59 (2014) 130–144.
  19. R. Thiruvenkatachari, S. Vigneswaran, S. Moon, A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng., 25 (2008) 64–72.
  20. P. Dhiman, Mu. Naushad, K.M. Batoo, A. Kumar, S. Sharma, A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable and efficient photocatalyst for solar powered degradation of Bisphenol A from water, J. Cleaner Prod., 165 (2017) 1542–1556.
  21. A. Kumar, Shalini, G. Sharma, Mu. Naushad, A. Kumar, S. Kalia, C. Guo, G.T. Mola, Facile hetero assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil, J. Photochem. Photobiol. A: Chemistry, 337 (2017) 118–131.
  22. S.S. Bhande, R.B. Ambade, D.V. Shinde, S.B. Ambade, S.A. Patil, M. Naushad, R.S. Mane, Z.A. Alothman, S.-H. Lee, S.-H. Han, Improved photoelectrochemical cell performance of tin oxide with functionalized multiwalled carbon nanotubes−cadmium selenide sensitizer, ACS Appl. Mater. Interfaces, 7 (2015) 25094−25104.
  23. D. Pathania, D. Gupta, A.H. Al-Muhtaseb, G. Sharma, A. Kumar, Mu. Naushad, T. Ahamad, S.M. Alshehri, Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ ZnS in presence of solar irradiation, J. Photochem. Photobiol. A: Chemistry, 329 (2016) 61–68.
  24. P. Iovino, S. Chianese, S. Canzano, M. Prisciandaro, D. Musmarra, Degradation of ibuprofen in aqueous solution with UV light: the effect of reactor volume and pH, Water Air Soil Pollut., 2016 (2016) 194–227.
  25. J. Candido, S.J. Andrade, A.L. Fonseca, F.S. Silva, M.R.A. Silva, M.M. Kondo, Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions, Environ. Sci. Pollut. Res., 23 (2016) 19911–19920.
  26. J. Silva, J. Teodoro, R. Afonso, S. Aquino, R. Augusti, Photolysis and photocatalysis of ibuprofen in aqueous medium: characterization of byproducts via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia Salina, J. Mass Spectrom., 49 (2014) 145–153.
  27. H. Chen, Y. Ku, A. Irawan, Photodecomposition of o-cresol by UV-LED/TiO2 process with controlled periodic illumination, Chemosphere, 69 (2007) 156–181.
  28. F.S. Braz, M.R.A. Silva, F.S. Silva, S.J. Andrade, A.L. Fonseca, M.M. Kondo, Photocatalytic degradation of ibuprofen using TiO2 and ecotoxicological assessment of degradation intermediates against Daphnia similis, J. Environ. Protect., 5 (2014) 620–626.
  29. R. Vijayalakshmi, V. Rajendran, Synthesis and characterization of nano-TiO2 via different methods, Arch. Appl. Sci. Res., 4 (2012) 1183–1190.
  30. A. Zaleska, P. Górska, J.W. Sobczak, J. Hupka, Thioacetamide and thiourea impact on visible light activity of TiO2, Appl. Catal. B: Environ., 76 (2007) 1–8.
  31. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light, irradiation, Appl. Catal. B: Environ., 91 (2009) 657–662.
  32. A.E. Giannakas, E. Seristatidou, Y. Deligiannakis, I. Konstantinou, Photocatalytic activity of N-doped and NeF co-doped TiO2 and reduction of chromium(VI) in aqueous solution: an EPR study, Appl. Catal. B: Environ., 132 (2013) 460–468.
  33. M.S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles, Chemosphere, 65 (2006) 1976–1982.
  34. Mu. Naushad, T. Ahamad, B.M. Al-Maswari, A. Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017) 1351–1360.
  35. D. Pathania, G. Sharma, A. Kumar, Mu. Naushad, S. Kalia, A. Sharma, Z.A. ALOthman, Combined sorptional–photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite, Toxicol. Environ. Chem., 97 (2015) 526–537.
  36. S. Rajendran, D. Manoj, K. Raju, D.D. Dionysiou, Mu. Naushad, F. Gracia, L. Cornejo, M.A. Gracia-Pinilla, T. Ahamad, Influence of mesoporous defect induced mixed-valent NiO(Ni2+/Ni3+)-TiO2 nanocomposite for non-enzymatic glucose biosensors, Sensors Actuators B, 264 (2018) 27–37.
  37. D. Pathania, R. Katwal, G. Sharma, Mu. Naushad, M. Rizwan Khan, A.H. Al-Muhtaseb, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye, Int. J. Biol. Macromol., 87 (2016) 366–374.
  38. A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, Mu. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and solar powered degradation of sulfamethoxazole from aqueous environment, Chem. Eng. J., 334 (2018) 462–478.
  39. L.M. Bertus, R.A. Carcel, A. Duta, Prediction of TiO2 and WO3 nanopowders surface charge by the evaluation of point of zero charge (PZC), Environ. Eng. Manage. J., 10 (2011) 1021–1026.
  40. Pharmacopoeia Council of Europe, 6th ed., British Pharmacopoeia, London, 2009, pp. 3128–3136.
  41. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Titanium dioxide photocatalysis for pharmaceutical wastewater treatment, Environ. Chem. Lett., 12 (2014) 27–47.
  42. I. Georgaki, E. Vasilaki, N. Katsarakis, A Study on the degradation of carbamazepine and ibuprofen by TiO2 and ZnO photocatalysis upon UV/visible-light irradiation, Amer. J. Anal. Chem., 5 (2014) 518–534.
  43. M. Papamija, Photocatalytic degradation of ibuprofen using titanium dioxide, Boletín Técnico, 49 (2011) 35–40.
  44. Y. He, Photochemical Reactions of Naproxen, Ibuprofen and Tyrosine, Master Thesis, Purdue University, Indiana, 2013.
  45. M. Khaleghi Abbasabadi, S. Khodabakhshi, S. KianI, Titanium (IV) oxide nanoparticles: a green catalyst for the synthesis of dicoumarols in aqueous media, Proc. 5th International Congress on Nanoscience & Nanotechnology, Tehran, Iran, October 2014, pp. 22–24.