References
- P. Barnes, E. Griner, K. Fann, R. Nahin, Complementary and
alternative medicine use among adults: United States, 2002,
Seminars in Integrative Medicine, 2 (2004) 54–71.
- M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual
pharmaceuticals from aqueous systems by advanced oxidation
processes, Environ. Int., 35 (2009) 402–417.
- S. Mompelat, B. Le Bot, O. Thomas, Occurrence and fate of
pharmaceutical products and by-products, from resource to
drinking water, Environ. Int., 35 (2009) 803–814.
- L. Santos, A.N. Araujo, A. Fachini, A. Pena, C.D. Matos,
M.C. Montenegro, Ecotoxicological aspects related to the presence
of pharmaceuticals in the aquatic environment, J. Hazard.
Mater., 175 (2010) 45–95.
- W. Sim, J. Lee, E. Lee, S. Shin, S. Hwang, J. Oh, Occurrence and
distribution of pharmaceuticals in wastewater from households,
livestock farms, hospitals and pharmaceutical manufactures,
Chemosphere, 82 (2011) 179–186.
- E. Touraud, B. Roig, J. Sumpter, C. Coetsier, Drug residues
and endocrine disruptors in drinking water: risk for humans?,
Int. J. Hygiene Environ. Health, 214 (2011) 437–441.
- L. Heckmann, A. Callaghan, H. Hooper, R. Connon, H.T. Hutchinson,
J.S. Maund, M.S. Richard, Chronic toxicity of ibuprofen
to Daphnia magna: effects on life history traits and population
dynamics, Toxicol. Lett., 172 (2007) 137–145.
- A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of
pharmaceuticals in water and wastewater environments,
Anal. Bioanal. Chem., 387 (2007) 1225–1234.
- T. Heberer, Tracking persistent pharmaceutical residues from
municipal sewage to drinking water, J. Hydrology, 226 (2002)
175–189.
- S. Kim, J. Cho, I. Kim, B. Vanderford, S. Snyder, Occurrence
and removal of pharmaceuticals and endocrine disruptors in
South Korean surface, drinking, and waste waters, Water Res.,
41 (2007) 1013–1021.
- G. Boyd, H. Reemtsma, D. Grimm, S. Mitera, Pharmaceuticals
and personal care products (PPCPs) in surface and treated
waters of Louisiana, USA, and Ontario, Canada, Sci. Total
Environ., 311 (2003) 135–149.
- C. Yu, K. Chu, Occurrence of pharmaceuticals and personal
care products along the West Prong Little Pigeon River in east
Tennessee, USA, Chemosphere, 75 (2009) 1281–1286.
- P. Roberts, K. Thomas, The occurrence of selected pharmaceuticals
in wastewater effluent and surface waters of
the lower Tyne catchment, Sci. Total Environ., 356 (2006)
143–153.
- H.R. Buser, T. Poiger, M.D. Muller, Occurrence and environmental
behavior of the chiral pharmaceutical drug ibuprofen
in surface waters and in wastewater, Environ. Sci. Technol.,
33 (1999) 2529–2535.
- C. Miege, J.M. Choubert, L. Ribeiro, M. Eusebe, M. Coquery,
Removal efficiency of pharmaceuticals and personal care
products with varying wastewater treatment processes and
operating conditions—conception of a database and first
results, Water Sci. Technol., 57 (2007) 49–56.
- S. Snyder, S. Adham, A. Redding, F. Cannon, J. Carolis,
J. Oppenheimer, E. Wert, Y. Yoon, Role of membranes and
activated carbon in the removal of endocrine disruptors and
pharmaceuticals, Desalination, 202 (2006) 156–181.
- R. Giri, S. Ozaki, H. Ota, R. Takanami, S. Taniguchi, Degradation of
common pharmaceuticals and personal care products in mixed
solutions by advanced oxidation techniques, Int. J. Environ. Sci.
Technol., 7 (2010) 251–260.
- H. Hossaini, G. Moussavi, M. Farrokhi, The investigation of
the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic
degradation and mineralization of organophosphate pesticides
in water, Water Res., 59 (2014) 130–144.
- R. Thiruvenkatachari, S. Vigneswaran, S. Moon, A review on
UV/TiO2 photocatalytic oxidation process, Korean J. Chem.
Eng., 25 (2008) 64–72.
- P. Dhiman, Mu. Naushad, K.M. Batoo, A. Kumar, S. Sharma,
A.A. Ghfar, G. Kumar, M. Singh, Nano FexZn1−xO as a tuneable
and efficient photocatalyst for solar powered degradation of
Bisphenol A from water, J. Cleaner Prod., 165 (2017) 1542–1556.
- A. Kumar, Shalini, G. Sharma, Mu. Naushad, A. Kumar, S. Kalia,
C. Guo, G.T. Mola, Facile hetero assembly of superparamagnetic
Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of
methyl paraben and pesticide removal from soil, J. Photochem.
Photobiol. A: Chemistry, 337 (2017) 118–131.
- S.S. Bhande, R.B. Ambade, D.V. Shinde, S.B. Ambade, S.A. Patil,
M. Naushad, R.S. Mane, Z.A. Alothman, S.-H. Lee, S.-H. Han,
Improved photoelectrochemical cell performance of tin oxide
with functionalized multiwalled carbon nanotubes−cadmium
selenide sensitizer, ACS Appl. Mater. Interfaces, 7 (2015)
25094−25104.
- D. Pathania, D. Gupta, A.H. Al-Muhtaseb, G. Sharma, A. Kumar,
Mu. Naushad, T. Ahamad, S.M. Alshehri, Photocatalytic degradation
of highly toxic dyes using chitosan-g-poly (acrylamide)/
ZnS in presence of solar irradiation, J. Photochem. Photobiol.
A: Chemistry, 329 (2016) 61–68.
- P. Iovino, S. Chianese, S. Canzano, M. Prisciandaro, D. Musmarra,
Degradation of ibuprofen in aqueous solution with UV light:
the effect of reactor volume and pH, Water Air Soil Pollut., 2016
(2016) 194–227.
- J. Candido, S.J. Andrade, A.L. Fonseca, F.S. Silva, M.R.A. Silva,
M.M. Kondo, Ibuprofen removal by heterogeneous photocatalysis
and ecotoxicological evaluation of the treated solutions,
Environ. Sci. Pollut. Res., 23 (2016) 19911–19920.
- J. Silva, J. Teodoro, R. Afonso, S. Aquino, R. Augusti, Photolysis
and photocatalysis of ibuprofen in aqueous medium: characterization
of byproducts via liquid chromatography coupled
to high-resolution mass spectrometry and assessment of their
toxicities against Artemia Salina, J. Mass Spectrom., 49 (2014)
145–153.
- H. Chen, Y. Ku, A. Irawan, Photodecomposition of o-cresol by
UV-LED/TiO2 process with controlled periodic illumination,
Chemosphere, 69 (2007) 156–181.
- F.S. Braz, M.R.A. Silva, F.S. Silva, S.J. Andrade, A.L. Fonseca,
M.M. Kondo, Photocatalytic degradation of ibuprofen
using TiO2 and ecotoxicological assessment of degradation
intermediates against Daphnia similis, J. Environ. Protect.,
5 (2014) 620–626.
- R. Vijayalakshmi, V. Rajendran, Synthesis and characterization
of nano-TiO2 via different methods, Arch. Appl. Sci. Res.,
4 (2012) 1183–1190.
- A. Zaleska, P. Górska, J.W. Sobczak, J. Hupka, Thioacetamide
and thiourea impact on visible light activity of TiO2, Appl.
Catal. B: Environ., 76 (2007) 1–8.
- X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang,
K. Klabunde, Photo-catalytic degradation of Rhodamine B on
C-, S-, N-, and Fe-doped TiO2 under visible-light, irradiation,
Appl. Catal. B: Environ., 91 (2009) 657–662.
- A.E. Giannakas, E. Seristatidou, Y. Deligiannakis, I. Konstantinou,
Photocatalytic activity of N-doped and NeF co-doped TiO2 and
reduction of chromium(VI) in aqueous solution: an EPR study,
Appl. Catal. B: Environ., 132 (2013) 460–468.
- M.S. Nahar, K. Hasegawa, S. Kagaya, Photocatalytic degradation
of phenol by visible light-responsive iron-doped
TiO2 and spontaneous sedimentation of the TiO2 particles,
Chemosphere, 65 (2006) 1976–1982.
- Mu. Naushad, T. Ahamad, B.M. Al-Maswari, A. Alqadami,
S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous
carbon as efficient adsorbent for the removal of highly
toxic metal ion from aqueous medium, Chem. Eng. J., 330 (2017)
1351–1360.
- D. Pathania, G. Sharma, A. Kumar, Mu. Naushad, S. Kalia,
A. Sharma, Z.A. ALOthman, Combined sorptional–photocatalytic
remediation of dyes by polyaniline Zr(IV) selenotungstophosphate
nanocomposite, Toxicol. Environ. Chem., 97 (2015)
526–537.
- S. Rajendran, D. Manoj, K. Raju, D.D. Dionysiou, Mu. Naushad,
F. Gracia, L. Cornejo, M.A. Gracia-Pinilla, T. Ahamad, Influence
of mesoporous defect induced mixed-valent NiO(Ni2+/Ni3+)-TiO2 nanocomposite for non-enzymatic glucose biosensors,
Sensors Actuators B, 264 (2018) 27–37.
- D. Pathania, R. Katwal, G. Sharma, Mu. Naushad, M. Rizwan
Khan, A.H. Al-Muhtaseb, Novel guar gum/Al2O3 nanocomposite
as an effective photocatalyst for the degradation of malachite
green dye, Int. J. Biol. Macromol., 87 (2016) 366–374.
- A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb,
Mu. Naushad, A.A. Ghfar, F.J. Stadler, Quaternary magnetic
BiOCl/g-C3N4/Cu2O/Fe3O4 nano-junction for visible light and
solar powered degradation of sulfamethoxazole from aqueous
environment, Chem. Eng. J., 334 (2018) 462–478.
- L.M. Bertus, R.A. Carcel, A. Duta, Prediction of TiO2 and WO3
nanopowders surface charge by the evaluation of point of zero
charge (PZC), Environ. Eng. Manage. J., 10 (2011) 1021–1026.
- Pharmacopoeia Council of Europe, 6th ed., British Pharmacopoeia,
London, 2009, pp. 3128–3136.
- D. Kanakaraju, B.D. Glass, M. Oelgemöller, Titanium dioxide
photocatalysis for pharmaceutical wastewater treatment, Environ.
Chem. Lett., 12 (2014) 27–47.
- I. Georgaki, E. Vasilaki, N. Katsarakis, A Study on the
degradation of carbamazepine and ibuprofen by TiO2 and ZnO
photocatalysis upon UV/visible-light irradiation, Amer. J. Anal.
Chem., 5 (2014) 518–534.
- M. Papamija, Photocatalytic degradation of ibuprofen using
titanium dioxide, Boletín Técnico, 49 (2011) 35–40.
- Y. He, Photochemical Reactions of Naproxen, Ibuprofen and
Tyrosine, Master Thesis, Purdue University, Indiana, 2013.
- M. Khaleghi Abbasabadi, S. Khodabakhshi, S. KianI, Titanium
(IV) oxide nanoparticles: a green catalyst for the synthesis of
dicoumarols in aqueous media, Proc. 5th International Congress
on Nanoscience & Nanotechnology, Tehran, Iran, October 2014,
pp. 22–24.