References
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin,
J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric
photocatalyst for hydrogen production from water under visible
light, Nat. Mater., 8 (2009) 76–80.
- W. Liu, J. Ma, C. Shen, Y. Wen, W. Liu, A pH-responsive and
magnetically separable dynamic system for efficient removal of
highly dilute antibiotics in water, Water Res., 90 (2015) 24–33.
- J. Ma, L. Xu, C. Shen, C. Hu, W. Liu, Y. Wen, Fe-N-graphene
Al2O3/pentlandite from microalgae: high Fenton catalytic
efficiency from enhanced Fe3+ reduction, Environ. Sci. Technol.,
52 (2018) 3608–3614.
- X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen
peroxide and visible light, J. Am. Chem. Soc., 131 (2009)
11658–11659.
- S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng,
G. Wu, Fe3+ doping promoted N2 photofixation ability of
honeycombed graphitic carbon nitride: the experimental and
density functional theory simulation analysis, Appl. Catal., B,
201 (2017) 58–69.
- Q. Liu, J. Zhang, Graphene supported Co-g-C3N4 as a novel
metal-macrocyclic electrocatalyst for the oxygen reduction
reaction in fuel cells, Langmuir, 29 (2013) 3821–3828.
- D. Ghosh, G. Periyasamy, B. Pandey, S.K. Pati, Computational
studies on magnetism and the optical properties of transition
metal embedded graphitic carbon nitride sheets, J. Mater.
Chem. C, 2 (2014) 7943–7951.
- Y. Wen, X. Jiang, Pulsed corona discharge-induced reactions
of acetophenone in water, Plasma Chem. Plasma Process., 21
(2001) 345–354.
- J. Ma, Q. Yang, Y. Wen, W. Liu, Fe-g-C3N4/graphitized
mesoporous carbon composite as an effective Fenton-like
catalyst in a wide pH range, Appl. Catal., B, 201 (2017) 232–240.
- X. Li, W. Liu, J. Ma, Y. Wen, Z. Wu, High catalytic activity of
magnetic FeOx/NiOy/SBA-15: the role of Ni in the bimetallic
oxides at the nanometer level, Appl. Catal., B, 179 (2015)
239–248.
- M. Zhang, X. Xie, M. Tang, C.S. Criddle, Y. Cui, S.X. Wang,
Magnetically ultraresponsive nanoscavengers for nextgeneration
water purification systems, Nat. Commun., 4 (2013)
1866.
- L. Xu, X. Li, J. Ma, Y. Wen, W. Liu, Nano-MnOx on activated
carbon prepared by hydrothermal process for fast and highly
efficient degradation of azo dyes, Appl. Catal. A Gen., 485
(2014) 91–98.
- E. Antolini, Carbon supports for low-temperature fuel cell
catalysts, Appl. Catal. A Gen., 88 (2009) 1–24.
- Z. Chen, J. Wang, H. Chen, Y. Wen, W. Liu, Enantioselective
phytotoxicity of dichlorprop to Arabidopsis thaliana: the effect
of cytochrome P450 enzymes and the role of Fe, Environ. Sci.
Technol., 51 (2017) 12007–12015.
- F. Lücking, H. Köser, M. Jank, A. Ritter, Iron powder,
graphite and activated carbon as catalysts for the oxidation of
4-chlorophenol with hydrogen peroxide in aqueous solution,
Water Res., 32 (1998) 2607–2614.
- Y. Li, M. Guo, S. Yin, L. Chen, Y. Zhou, R. Qiu, C. Au, Graphite
as a highly efficient and stable catalyst for the production of
lactones, Carbon, 55 (2013) 269–275.
- V. Fuster, F.J. Castro, H. Troiani, G. Urretavizcaya,
Characterization of graphite catalytic effect in reactively ballmilled
MgH2–C and Mg–C composites, Int. J. Hydrogen Energy,
36 (2011) 9051–9061.
- J. Ma, Q. Yang, D. Xu, X. Zeng, Y. Wen, W. Liu, Efficient removal
of antibiotics in a fluidized bed reactor by facile fabricated
magnetic powdered activated carbon, Environ. Sci. Pollut. Res.
Int., 24 (2016) 3820–3828.
- I. Bautista-Toledo, M.A. Ferro-García, J. Rivera-Utrilla,
C. Moreno-Castilla, F.J. Vegas Fernández, Bisphenol A removal
from water by activated carbon. Effects of carbon characteristics
and solution chemistry, Environ. Sci. Technol., 39 (2005)
6246–6250.
- Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, Superparamagnetic
high-magnetization microspheres with an Fe3O4@SiO2 core and
perpendicularly aligned mesoporous SiO2 shell for removal of
microcystins, J. Am. Chem. Soc., 130 (2008) 28–29.
- C. Jiang, S. Pang, J. Ma, W. Xie, Y. Zou, Spectrophotometric
determination of hydrogen peroxide in Fenton reaction with
titanium oxalate, China Water Wastewater, 22 (2006) 88–91.
- L. Lyu, L. Zhang, C. Hu, Galvanic-like cells produced by
negative charge nonuniformity of lattice oxygen on d-TiCuAl-SiO2 nanospheres for enhancement of Fenton-catalytic
efficiency, Environ. Sci. Nano, 3 (2016) 1483–1492.
- Y. Nie, C. Hu, J. Qu, X. Zhao, Photoassisted degradation of
endocrine disruptors over CuOx-FeOOH with H2O2 at neutral
pH, Appl. Catal., B, 87 (2009) 30–36.
- A. Hiroki, J.A. LaVerne, Decomposition of hydrogen peroxide
at water-ceramic oxide interfaces, J. Phys. Chem. B, 109 (2005)
3364–3370.
- L.B. Khalil, B.S. Girgis, T.A. Tawfik, Decomposition of H2O2 on
activated carbon obtained from olive stones, J. Chem. Technol.
Biotechnol., 76 (2001) 1132–1140.
- S. Liu, B. Xiao, L. Feng, S. Zhou, Z. Chen, C. Liu, F. Chen,
Z. Wu, N. Xu, W.C. Oh, Z.D. Meng, Graphene oxide enhances
the Fenton-like photocatalytic activity of nickel ferrite for
degradation of dyes under visible light irradiation, Carbon, 64
(2013) 197–206.
- N.A. Zubir, C. Yacou, J. Motuzas, X.W. Zhang, J.C.D. da Costa,
Structural and functional investigation of graphene oxide-Fe3O4
nanocomposites for the heterogeneous Fenton-like reaction, Sci.
Rep., 4 (2014) 4594.
- J. Zhou, P.N. Duchesne, Y. Hu, J. Wang, P. Zhang, Y. Li, T. Regier,
H. Dai, Fe–N bonding in a carbon nanotube–graphene complex
for oxygen reduction: an XAS study, Phys. Chem. Chem. Phys.,
16 (2014) 15787–15791.
- Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu,
B. Barbiellini, A. Bansil, E.F. Holby, P. Zelenay, Experimental
observation of redox-induced Fe–N switching behavior as a
determinant role for oxygen reduction activity, ACS Nano, 9
(2015) 12496–12505.
- X. Chen, D. Deng, X. Pan, Y. Hu, X. Bao, N-doped graphene
as an electron donor of iron catalysts for CO hydrogenation to
light olefins, Chem. Commun., 51 (2015) 217–220.
- A. Bianconi, M. Dell’Ariccia, P.J. Durham, J.B. Pendry, Multiplescattering
resonances and structural effects in the x-rayabsorption
near-edge spectra of Fe II and Fe III hexacyanide
complexes, Phys. Rev. B, 26 (1982) 6502.
- H. Lim, J. Lee, S. Jin, J. Kim, J. Yoon, T. Hyeon, Highly active
heterogeneous Fenton catalyst using iron oxide nanoparticles
immobilized in alumina coated mesoporous silica, Chem.
Commun., 4 (2006) 463–465.
- T.D. Nguyen, N.H. Phan, M.H. Do, K.T. Ngo, Magnetic Fe2MO4
(M: Fe, Mn) activated carbons: fabrication, characterization and
heterogeneous Fenton oxidation of methyl orange, J. Hazard.
Mater., 185 (2011) 653–661.
- X. Li, X. Liu, L. Xu, Y. Wen, J. Ma, Z. Wu, Highly dispersed
Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like
processes: confinement and synergistic effects, Appl. Catal., B,
165 (2015) 79–86.
- Z. Matuszak, K.J. Reszka, C.F. Chignell, Reaction of melatonin
and related indoles with hydroxyl radicals: EPR and spin
trapping investigations, Free Radical Biol. Med., 23 (1997)
367–372.
- L. Lyu, L. Zhang, Q. Wang, Y. Nie, C. Hu, Enhanced Fenton
catalytic efficiency of γ-Cu–Al2O3 by σ-Cu2+–ligand complexes
from aromatic pollutant degradation, Environ. Sci. Technol., 49
(2015) 8639–8647.