References

  1. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8 (2009) 76–80.
  2. W. Liu, J. Ma, C. Shen, Y. Wen, W. Liu, A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water, Water Res., 90 (2015) 24–33.
  3. J. Ma, L. Xu, C. Shen, C. Hu, W. Liu, Y. Wen, Fe-N-graphene Al2O3/pentlandite from microalgae: high Fenton catalytic efficiency from enhanced Fe3+ reduction, Environ. Sci. Technol., 52 (2018) 3608–3614.
  4. X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc., 131 (2009) 11658–11659.
  5. S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng, G. Wu, Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis, Appl. Catal., B, 201 (2017) 58–69.
  6. Q. Liu, J. Zhang, Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells, Langmuir, 29 (2013) 3821–3828.
  7. D. Ghosh, G. Periyasamy, B. Pandey, S.K. Pati, Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets, J. Mater. Chem. C, 2 (2014) 7943–7951.
  8. Y. Wen, X. Jiang, Pulsed corona discharge-induced reactions of acetophenone in water, Plasma Chem. Plasma Process., 21 (2001) 345–354.
  9. J. Ma, Q. Yang, Y. Wen, W. Liu, Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range, Appl. Catal., B, 201 (2017) 232–240.
  10. X. Li, W. Liu, J. Ma, Y. Wen, Z. Wu, High catalytic activity of magnetic FeOx/NiOy/SBA-15: the role of Ni in the bimetallic oxides at the nanometer level, Appl. Catal., B, 179 (2015) 239–248.
  11. M. Zhang, X. Xie, M. Tang, C.S. Criddle, Y. Cui, S.X. Wang, Magnetically ultraresponsive nanoscavengers for nextgeneration water purification systems, Nat. Commun., 4 (2013) 1866.
  12. L. Xu, X. Li, J. Ma, Y. Wen, W. Liu, Nano-MnOx on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes, Appl. Catal. A Gen., 485 (2014) 91–98.
  13. E. Antolini, Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. A Gen., 88 (2009) 1–24.
  14. Z. Chen, J. Wang, H. Chen, Y. Wen, W. Liu, Enantioselective phytotoxicity of dichlorprop to Arabidopsis thaliana: the effect of cytochrome P450 enzymes and the role of Fe, Environ. Sci. Technol., 51 (2017) 12007–12015.
  15. F. Lücking, H. Köser, M. Jank, A. Ritter, Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution, Water Res., 32 (1998) 2607–2614.
  16. Y. Li, M. Guo, S. Yin, L. Chen, Y. Zhou, R. Qiu, C. Au, Graphite as a highly efficient and stable catalyst for the production of lactones, Carbon, 55 (2013) 269–275.
  17. V. Fuster, F.J. Castro, H. Troiani, G. Urretavizcaya, Characterization of graphite catalytic effect in reactively ballmilled MgH2–C and Mg–C composites, Int. J. Hydrogen Energy, 36 (2011) 9051–9061.
  18. J. Ma, Q. Yang, D. Xu, X. Zeng, Y. Wen, W. Liu, Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon, Environ. Sci. Pollut. Res. Int., 24 (2016) 3820–3828.
  19. I. Bautista-Toledo, M.A. Ferro-García, J. Rivera-Utrilla, C. Moreno-Castilla, F.J. Vegas Fernández, Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39 (2005) 6246–6250.
  20. Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins, J. Am. Chem. Soc., 130 (2008) 28–29.
  21. C. Jiang, S. Pang, J. Ma, W. Xie, Y. Zou, Spectrophotometric determination of hydrogen peroxide in Fenton reaction with titanium oxalate, China Water Wastewater, 22 (2006) 88–91.
  22. L. Lyu, L. Zhang, C. Hu, Galvanic-like cells produced by negative charge nonuniformity of lattice oxygen on d-TiCuAl-SiO2 nanospheres for enhancement of Fenton-catalytic efficiency, Environ. Sci. Nano, 3 (2016) 1483–1492.
  23. Y. Nie, C. Hu, J. Qu, X. Zhao, Photoassisted degradation of endocrine disruptors over CuOx-FeOOH with H2O2 at neutral pH, Appl. Catal., B, 87 (2009) 30–36.
  24. A. Hiroki, J.A. LaVerne, Decomposition of hydrogen peroxide at water-ceramic oxide interfaces, J. Phys. Chem. B, 109 (2005) 3364–3370.
  25. L.B. Khalil, B.S. Girgis, T.A. Tawfik, Decomposition of H2O2 on activated carbon obtained from olive stones, J. Chem. Technol. Biotechnol., 76 (2001) 1132–1140.
  26. S. Liu, B. Xiao, L. Feng, S. Zhou, Z. Chen, C. Liu, F. Chen, Z. Wu, N. Xu, W.C. Oh, Z.D. Meng, Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation, Carbon, 64 (2013) 197–206.
  27. N.A. Zubir, C. Yacou, J. Motuzas, X.W. Zhang, J.C.D. da Costa, Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction, Sci. Rep., 4 (2014) 4594.
  28. J. Zhou, P.N. Duchesne, Y. Hu, J. Wang, P. Zhang, Y. Li, T. Regier, H. Dai, Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study, Phys. Chem. Chem. Phys., 16 (2014) 15787–15791.
  29. Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E.F. Holby, P. Zelenay, Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity, ACS Nano, 9 (2015) 12496–12505.
  30. X. Chen, D. Deng, X. Pan, Y. Hu, X. Bao, N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins, Chem. Commun., 51 (2015) 217–220.
  31. A. Bianconi, M. Dell’Ariccia, P.J. Durham, J.B. Pendry, Multiplescattering resonances and structural effects in the x-rayabsorption near-edge spectra of Fe II and Fe III hexacyanide complexes, Phys. Rev. B, 26 (1982) 6502.
  32. H. Lim, J. Lee, S. Jin, J. Kim, J. Yoon, T. Hyeon, Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica, Chem. Commun., 4 (2006) 463–465.
  33. T.D. Nguyen, N.H. Phan, M.H. Do, K.T. Ngo, Magnetic Fe2MO4 (M: Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange, J. Hazard. Mater., 185 (2011) 653–661.
  34. X. Li, X. Liu, L. Xu, Y. Wen, J. Ma, Z. Wu, Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects, Appl. Catal., B, 165 (2015) 79–86.
  35. Z. Matuszak, K.J. Reszka, C.F. Chignell, Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations, Free Radical Biol. Med., 23 (1997) 367–372.
  36. L. Lyu, L. Zhang, Q. Wang, Y. Nie, C. Hu, Enhanced Fenton catalytic efficiency of γ-Cu–Al2O3 by σ-Cu2+–ligand complexes from aromatic pollutant degradation, Environ. Sci. Technol., 49 (2015) 8639–8647.