References
- J.M. Laine, D. Vial, P. Moulart, Status after 10 years of operationoverview
of UF technology today, Desalination, 131 (2000)
17–25.
- B. Van der Bruggen, C. Vandecasteele, T.V. Gestel, W. Doyen,
R. Leysen, A review of pressure-driven membrane processes in
wastewater treatment and drinking water production, Environ.
Prog., 22 (2003) 46–56.
- S. Chellam, J.G. Jacangelo, T.P. Bonacquisti, Modeling and
experimental verification of pilot-scale hollow fiber, direct
flow microfiltration with periodic backwashing, Environ. Sci.
Technol., 32 (1998) 75–81.
- K.J. Howe, M.M. Clark, Fouling of Microfiltration and
Ultrafiltration Membranes by Natural Waters, Environ. Sci.
Technol., 36 (2002) 3571–3576.
- R.H. Peiris, C. Halle, H. Budman, C. Moresoli, S. Peldszus, P.M.
Huck, R.L. Legge, Identifying fouling events in a membranebased
drinking water treatment process using principal
component analysis of fluorescence excitation–emission
matrices, Water Res., 44 (2010) 185–194.
- L. Wang, X. Wang, K. Fukushi, Effects of operational conditions
on ultrafiltration membrane fouling, Desalination, 229 (2008)
181–191.
- N. Lee, G. Amy, J. Croue, Low-pressure membrane (MF/UF)
fouling associated with allochthonous versus autochthonous
natural organic matter, Water Res., 40 (2006) 2357–2368.
- W. Gao, H. Liang, J. Ma, M. Han, Z.-l. Chen, Z.-s. Han, G.-b.
Li, Membrane fouling control in ultrafiltration technology for
drinking water production: a review, Desalination, 272 (2011)
1–8.
- S. Babel, S. Takizawa, H. Ozaki, Factors affecting seasonal
variation of membrane filtration resistance caused by Chlorella
algae, Water Res., 36 (2002) 1193–1202.
- Q.F. Liu, S.H. Kim, S. Lee, Prediction of microfiltration
membrane fouling using artificial neural network models, Sep.
Purif. Technol., 70 (2009) 96–102.
- F. Schmitt, R. Banuc, I.T. Yeom, K.U. Do, Development of
artificial neural networks to predict membrane fouling in
an anoxic-aerobic membrane bioreactor treating domestic
wastewater, Biochem. Eng. J., 133 (2018) 47–58.
- H.I. Witten, E. Frank, M.A. Hall, Data Mining, Principle
Machine Learning Tools and Techniques, Burlington, MA, 2011.
- J.R. Quinlan, Learning with Continuous Classes, in: Proc. 5th
Australian Joint Conference on Artificial Intelligence, World
Scientific, Singapore, 1992, pp. 343–348.
- Y. Wang, I.H. Witten, Inducing Model Trees for Continuous
Classes, in Proc. 9th European Conference on Machine
Learning, 1997.
- B. Bhattacharya, D.P. Solomatine, Neural networks and M5P
model trees in modelling water level-discharge relationship,
Neurocomputing, 63 (2005) 381–396.
- D.P. Solomatine, Optimisation of hierarchical modular models
and M5 trees, in Proc. International Joint Conference on
Neural Networks, Budapest, Hungary, 2004.
- E.K. Onyari, F.M. Ilunga, Application of MLP neural network
and M5P model tree in predicting streamflow: a case study
of Luvuvhu Catchment, South Africa, Int. J. Innov. Manage.
Technol., 4 (2013) 1–15.
- M. Dalmau, N. Atanasova, S. Gabarrón, I.R. Roda, J. Comas,
Comparison of a deterministic and a data driven model to
describe MBR fouling, Chem. Eng. J., 260 (2015) 300–308.