References

  1. S.L. Kuzu, A. Saral, G. Gunes, A. Karadeniz, Evaluation of background soil and air polychlorinated biphenyl (PCB) concentrations on a hill at the outskirts of a metropolitan city, Chemosphere, 154 (2016) 79–89.
  2. C. Turgut, C. Gokbulut, T.J. Cutright, Contents and sources of DDT impurities in dicofol formulations in Turkey, Environ. Sci. Pollut. Res. Int., 16 (2009) 214–217.
  3. Y.B. Yohannes, Y. Ikenaka, G. Ito, S.M.M. Nakayama, H. Mizukawa, V. Wepener, N.J. Smit, J.H.J. Van Vuren, M. Ishizuka, Assessment of DDT contamination in house rat as a possible bioindicator in DDT-sprayed areas from Ethiopia and South Africa, Environ. Sci. Pollut. Res. Int., 24 (2017) 23763–23770.
  4. G.S. Kwon, H.Y. Sohn, K.S. Shin, E. Kim, B.I. Seo, Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Klebsiella oxytoca KE-8, Appl. Microbiol. Biotechnol., 67 (2005) 845–850.
  5. H. Humbert, H. Gallard, H. Suty, J.P. Croue, Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC), Water Res., 42 (2008) 1635–1643.
  6. V.K. Gupta, I. Ali, Removal of endosulfan and methoxychlor from water on carbon slurry, Environ. Sci. Technol., 42 (2008) 766–770.
  7. M.P. Ormad, N. Miguel, A. Claver, J.M. Matesanz, J.L. Ovelleiro, Pesticides removal in the process of drinking water production, Chemosphere, 71 (2008) 97–106.
  8. W.K. Lafi, Z. Al-Qodah, Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions, J. Hazard. Mater., 137 (2006) 489–497.
  9. F.B. Li, X.M. Li, S.G. Zhou, L. Zhuang, F. Cao, D.Y. Huang, W. Xu, T.X. Liu, C.H. Feng, Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide, Environ. Pollut., 158 (2010) 1733–1740.
  10. B. Sarkar, N. Venkateshwarlu, R. Nageswara Rao, C. Bhattacharjee, V. Kale, Potable water production from pesticide contaminated surface water—a membrane based approach, Desalination, 204 (2007) 368–373.
  11. Y. Samet, L. Agengui, R. Abdelhédi, Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes, Chem. Eng. J., 161 (2010) 167-172.
  12. E.R. Bandala, S. Gelover, M.T. Leal, C. Arancibia-Bulnes, A. Jimenez, C.A. Estrada, Solar photocatalytic degradation of Aldrin, Catal. Today, 76 (2002) 189–199.
  13. X. Cong, N.D. Xue, S.J. Wang, K.J. Li, F.S. Li, Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron, Sci. Total Environ., 408 (2010) 3418–3423.
  14. S.C. Yang, M. Lei, T.B. Chen, X.Y. Li, Q. Liang, C. Ma, Application of zerovalent iron (Fe-0) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant, Chemosphere, 79 (2010) 727–732.
  15. X.H. Qiu, Z.Q. Fang, Degradation of halogenated organic compounds by modified nano zero-valent iron, Prog Chem, 22 (2010) 291-297.
  16. D.W. Elliott, H.L. Lien, W.X. Zhang, Zerovalent iron nanoparticles for treatment of ground water contaminated by hexachlorocyclohexanes, J. Environ. Qual., 37 (2008) 2192–2201.
  17. K. Ulucan-Altuntas, E. Debik, I.I. Yoruk, D. Kozal, Single and binary adsorption of copper and nickel metal ions on nano zero valent iron (nZVI): a kinetic approach, Desal. Wat. Treat., 93 (2017) 274–279.
  18. Y.G. Wu, M.C. Yang, S.H. Hu, L. Wang, H.R. Yao, Characteristics and mechanisms of 4A zeolite supported nanoparticulate zerovalent iron as Fenton-like catalyst to degrade methylene blue, Toxicol. Environ. Chem., 96 (2014) 227–242.
  19. Y.G. Wu, H.R. Yao, S. Khan, S.H. Hu, L. Wang, Characteristics and mechanisms of kaolinite-supported zero-valent iron/H2O2 system for nitrobenzene degradation, Clean, 45 (2017). Doi: 10.1002/clen.201600826.
  20. S.H. Hu, H.R. Yao, K.F. Wang, C. Lu, Y.G. Wu, Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as Fenton-like catalyst, Water Air Soil Pollut., 226 (2015). DOI: 10.1007/ s11270-015-2421-7.
  21. C.J. Clark, X.S. Chen, S. Babu, Degradation of toxaphene by zero-valent iron and bimetallic substrates, J. Environ. Eng.- ASCE, 131 (2005) 1733–1739.
  22. C. Chang, F. Lian, L.Y. Zhu, Simultaneous adsorption and degradation of gamma-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support, Environ. Pollut., 159 (2011) 2507–2514.
  23. L.H. Chen, C.C. Huang, H.L. Lien, Bimetallic iron-aluminum particles for dechlorination of carbon tetrachloride, Chemosphere, 73 (2008) 692–697.
  24. N.M. Zhu, Yi-Li, F.S. Zhang, Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles, Chem. Eng. J., 171 (2011) 919–925.
  25. S.H. Joo, D. Zhao, Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer, Chemosphere, 70 (2008) 418–425.
  26. EPA, Regional Screening Levels (RSLs) – Generic Tables (June 2017), 2017.
  27. K. Ulucan-Altuntas, E. Debik, Borohydride method modification in synthesizing nano zero valent iron and its application in DDT removal, Environ. Sci. Pollut. Res. Int., 25 (2018) 30110–30121.
  28. X.Q. Li, D.W. Elliott, W.X. Zhang, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31 (2006) 111–122.
  29. W.-x. Zhang, D.W. Elliott, Applications of iron nanoparticles for groundwater remediation, Remediation, 16 (2006) 7–21.
  30. C. Uzum, T. Shahwan, A. Eroglu, K. Hallam, T. Scott, I. Lieberwirth, Synthesis and characterization of kaolinitesupported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43 (2009) 172–181.
  31. L. Li, M. Fan, R.C. Brown, J. Van Leeuwen, J. Wang, W. Wang, Y. Song, P. Zhang, Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review, Crit. Rev. Environ. Sci. Technol., 36 (2006) 405–431.
  32. D.Z. Feng He, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol., 39 (2005) 3314–3320.
  33. K. Altuntas, E. Debik, DDT Removal by Nano Zero Valent Iron: Influence of pH on Removal Mechanism, P.D.M. Shelly, P.D.M. Ozaslan, Eds., International Conference on Technology, Engineering and Science, ISRES Publishing, Antalya, Turkey, 2017, pp. 339–346.
  34. S.L. Kuzu, Compositional variation of PCBs, PAHs, and OCPs at gas phase and size segregated particle phase during dust incursion from the Saharan Desert in the Northwestern Anatolian Peninsula, Adv. Meteorol., (2016). DOI: 10.1155/2016/7153286.
  35. Z.Q. Shi, J.T. Nurmi, P.G. Tratnyek, Effects of nano zero-valent iron on oxidation-reduction potential, Environ. Sci. Technol., 45 (2011) 1586–1592.
  36. M. Rani, U. Shanker, V. Jassal, Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review, J. Environ. Manage., 190 (2017) 208–222.
  37. James Pontolillo, R.P. Eganhouse, The Search for Reliable Aqueous Solubility (Sw) and Octanol-Water Partition Coefficient (Kow) Data for Hydrophobic Organic Compounds: DDT and DDE as a Case Study, U.S. Geological Survey Water- Resources Investigations Report 01-4201, 2001.
  38. G.D. Sayles, G.R. You, M.X. Wang, M.J. Kupferle, DDT, DDD, and DDE dechlorination by zero-valent iron, Environ. Sci. Technol., 31 (1997) 3448–3454.
  39. A. Shoiful, Y. Ueda, R. Nugroho, K. Honda, Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials, J. Water Process Eng., 11 (2016) 110–117.
  40. A.J. Feitz, S.H. Joo, J. Guan, Q. Sun, D.L. Sedlak, T. David Waite, Oxidative transformation of contaminants using colloidal zerovalent iron, Colloids Surf. A Physicochem. Eng. Asp., 265 (2005) 88–94.