References
- M.N. Timofeeva, S.Ts. Khankhasaeva, E.P. Talsi, V.N. Panchenko,
A.V. Golovin, E.Ts. Dashinamzhilova, S.V. Tsybulya, The effect
of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as
catalysts in phenol peroxide oxidation, Appl. Catal., B, 90 (2009)
618–627.
- J. Carriazo, E. Guélou, J. Barrault, J.-M. Tatibouët, S. Moreno,
Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe
modified clays, Appl. Clay Sci., 22 (2003) 303–308.
- J. Carriazo, E. Guélou, J. Barrault, J.-M. Tatibouët, R. Molina,
S. Moreno, Synthesis of pillared clays containing Al, Al-Fe
or Al-Ce-Fe from a bentonite: characterization and catalytic
activity, Water Res., 39 (2005) 3891–3899.
- A. El Gaidoumi, A. Loqman, A.C. Benadallah, B. El Bali, A.
Kherbeche, Co(II)-pyrophyllite as catalyst for phenol oxidative
degradation: optimization study using response surface
methodology, Waste Biomass Valor., (2017) 1–9. http://dx.doi.
org/10.1007/s12649-017-0117-5.
- S.D. Rodrigues Carmen, O.S.G.P. Soares, M.T. Pinho, M.F.R.
Pereira, M. Madeira Luis, p-Nitrophenol degradation by
heterogeneous Fenton’s oxidation over activated carbon-based
catalysts, Appl. Catal., B, 219 (2017) 109–122.
- U.S. EPA, National Pesticide Survey: 4-NitroPhenol, National
Service Center for Environmental Publications, 2015.
- U.S. Department of Health and Human Services (HSS):
Toxicological profile for chlorophenols, Sciences International,
Inc., Research Triangle Park, Inc, 1999.
- Inventory TR: Toxicological Profile for Nitrophenols:
2-Nitrophenols and 4-Nitrophenols, Office of Toxic Substances,
Washington, 1992.
- P.-T. Huong, B.-K. Lee, J. Kim, C.-H. Lee, Nitrophenols removal
from aqueous medium using Fe-nano mesoporous zeolite,
Mater. Des., 101 (2016) 210–217.
- J. Zhang, C. Wu, A. Jia, B. Hu, Kinetics, equilibrium and
thermodynamics of the sorption of p-nitrophenol on two
variable charge soils of Southern China, Appl. Surf. Sci., 298
(2014) 95–101.
- S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M.
Houari, J. Debord, M. Harel, J-C. Bollinger, M. Baudu,
Simultaneous sorption of 4-nitrophenol and 2-nitrophenol
on a hybrid geocomposite based on surfactant-modified
pillared-clay and activated carbon, Chem. Eng. J., 279 (2015)
964–972.
- Y.-H. Shen, Removal of phenol from water by adsorption–flocculation using organobentonite, Water Res., 36 (2002)
1107–1114.
- D. Mantzavinos, E. Psillakis, Enhancement of biodegradability
of industrial wastewaters by chemical oxidation pre-treatment,
J. Chem. Technol. Biotechnol., 79 (2004) 431–454.
- J.-L. Wang, G. Zhao, L.-B. Wu, Slurry-phase biological treatment
of nitrophenol using bioaugmentation technique, Biomed.
Environ. Sci., 18 (2005) 77–81.
- Z. Jemaat, M. E. Suárez-Ojeda, J. Pérez, J. Carrera, Simultaneous
nitritation and p-nitrophenol removal using aerobic granular
biomass in a continuous airlift reactor, Bioresour. Technol., 150
(2013) 307–313.
- E.G. Garrido-Ramírez, B.K.G. Theng, M.L. Mora, Clays and
oxide minerals as catalysts and nanocatalysts in Fenton-like
reactions-a review, Appl. Clay Sci., 47 (2010) 182–192.
- L.F. Liotta, M. Gruttadauria, G. Di carlo, G. Perrini, V. Librando,
Heterogeneous catalytic degradation of phenolic substrates:
catalysts activity, J. Hazard. Mater., 162 (2009) 588–606.
- S. Perathoner, G. Centi, Wet hydrogen peroxide catalytic
oxidation (WHPCO) of organic waste in agro-food and
industrial steams, Top. Catal., 33 (2005) 207–224.
- E.V. Rokhina, J. Virkutyte, Environmental application of
catalytic processes: heterogeneous liquid phase oxidation
of phenol with hydrogen peroxide, Crit. Rev. Environ. Sci.
Technol., 41 (2011) 125–167.
- J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous
photo-Fenton oxidation with pillared clay-based catalysts for
wastewater treatment: a review, Appl. Catal. B, 98 (2010) 10–26.
- N. Inchaurrondo, E. Contreras, P. Haure, Catalyst reutilization
in phenol homogeneous cupro-Fenton oxidation, Chem. Eng. J.,
251 (2014) 146–157.
- O.B. Ayodele, B.H. Hameed, Synthesis of copper pillared
bentonite ferrioxalate catalyst for degradation of 4-nitrophenol
in visible light assisted Fenton process, J. Ind. Eng. Chem., 19
(2013) 966–974.
- O.B. Ayodele, J.K. Lim, B.H. Hameed, Degradation of phenol
in photo-Fenton process by phosphoric acid modified kaolin
supported ferric-oxalate catalyst: optimization and kinetic
modeling, Chem. Eng. J., 197 (2012) 181–192.
- A. El Gaidoumi, A.C. Benabdallah, B. El Bali, A. Kherbeche,
Synthesis and characterization of zeolite HS using natural
pyrophyllite as New Clay Source, Arab. J. Sci. Eng., 43 (2017)
191–197.
- N. Nath, A. Routaray, Y. Das, T. Maharana, A.K. Sutar, Synthesis
and structural studies of polymer-supported transition metal
complexes: efficient catalysts for oxidation of phenol, Kinet.
Catal., 56 (2015) 718–732.
- M. Ddani, A. Meunier, M. Zahraoui, D. Beaufort, M. El Wartiti, C.
Fontaine, B. Boukili, B. El Mahi, Clay mineralogy and chemical
composition of bentonites from the Gourougou volcanic massif
(north east morocco), Clays Clay Miner., 53 (2005) 250–267.
- M. Aalaoul, A. Azdimousa, K. El Hammouti, Bentonite’s
reserves Geometry of Trebia deposit in Nador region (North
eastern Morocco); contributions of geophysical surveys and core
drilling campaign, J. Mater. Environ. Sci., 6 (2015) 3564–3573.
- L.S. Belaroui, J.M.M. Millet, A. Bengueddach, Characterization
of lalithe, a new bentonite-type Algerian clay, for intercalation
and catalysts preparation, Catal. Today, 89 (2004) 279–286.
- F. Bergaya, G. Lagaly, In: F. Bergaya, G. Lagaly, Eds., Handbook
of Clay Science, Purification of natural clays, Elsevier,
Amsterdam, 2013, pp. 213–219.
- R. Ben Achma, A. Ghorbel, A. Dafinov, F. Medina, Coppersupported
pillared clay catalysts for the wet hydrogen peroxide
catalytic oxidation of model pollutant tyrosol, Appl. Catal., A,
349 (2008) 20–28.
- H. Khalaf, O. Bouras, V. Perrichon, Synthesis and
characterization of Al-pillared and cationic surfactant modified
Algerian bentonite, Microporous Mater., 8 (1997) 141–150.
- P.T. Hang, G.W. Brindley, Methylene blue adsorption by clay
minerals. Determination of surface areas and cation exchange
capacities (clay-organic studies XVIII), Clays Clay Miner., 18
(1970) 203–212.
- G. Rytwo, C. Serben, S. Nir, L. Margulies, Use of methylene blue
and crystal violet for determination of exchangeable cations in
montmorillonite, Clays Clay Miner., 39 (1991) 551–555.
- H.-J. Muñoz, C. Blanco, A. Gil, M.-Á. Vicente, L.-A. Galeano,
Preparation of Al/Fe-pillared clays: effect of the starting
mineral, Materials, 10 (2017) 1364.
- D. Zhou, Z. Zhang, J. Tang, X. Zhang, Q. Wang, L. Liao, Influence
of different exchangeable cations (Li+, Na+ and Ca2+) on the
modification effects and properties of organomontmorillonites
used in oil-based drilling fluids/muds, RSC Adv., 5 (2015)
90281–90287.
- S.A. Hassan, F.Z. Yehia, H.A. Hassan, S. Sadek, A. Darwish,
Various characteristics and catalytic performance of iron (II)
phthalocyanine immobilized onto titania- and vanadia-pillared
bentonite clay in in situ polymerization of methyl methacrylate:
an attempt to synthesize novel polymer/iron phthalocyanine/pillared clay nanocomposites, J. Mol. Catal., A, 332 (2010)
93–105.
- S. Azarkan, A. Peña, K. Draoui, C.I. Sainz-Díaz, Adsorption of
two fungicides on natural clays of Morocco, Appl. Clay Sci., 123
(2016) 37–46.
- I. Daou, O. Zegaoui, R. Chfaira, H. Ahlafi, H. Moussout, Physicochemical
characterization and kinetic study of methylene blue
adsorption onto a Moroccan Bentonite, Int. J. Sci. Res. Pub., 5
(2015) 293–301.
- I. Daou, O. Zegaoui, A. Amachrouq, Study of the effect of
an acid treatment of a natural Moroccan bentonite on its
physicochemical and adsorption properties, Water Sci. Technol.,
75 (2017) 1098–1117.
- H.Y. Liu, T. Shen, T.S. Li, P. Yuan, G. Shi, X.J. Bao, Green
synthesis of zeolites from a natural aluminosilicate mineral
rectorite: effects of thermal treatment temperature, Appl. Clay
Sci., 90 (2014) 53–60.
- E. Eren, B. Afsin, An investigation of Cu(II) adsorption by
raw and acid-activated bentonite: a combined potentiometric,
thermodynamic, XRD, IR, DTA study, J. Hazard. Mater., 151
(2018) 682–691.
- S.W. Wang, Y.H. Dong, M.L. He, L. Chen, X.J. Yu, Characterization
of GMZ bentonite and its application in the adsorption of Pb(II)
from aqueous solutions, Appl. Clay Sci., 43 (2009) 164–171.
- P. Yuan, F. Annabi-Bergaya, Q. Tao, M.D. Fan, Z.W. Liu, J.X.
Zhu, H.P. He, T.H. Chen, A combined study by XRD, FTIR, TG
and HRTEM on the structure of delaminated Fe-intercalated/
pillared clay, J. Colloid Interface Sci., 324 (2008) 142–149.
- M. El Miz, H. Akichoh, D. Berraaouan, S. Salhi, A. Tahani,
Chemical and physical characterization of Moroccan bentonite
taken from Nador (North of Morocco), Am. J. Chem., 7 (2017)
105–112.
- M.A. De Leoῐn, J. Castiglionia, J. Bussi, M. Sergio, Catalytic
activity of an iron-pillared montmorillonitic clay mineral in
heterogeneous photo-Fenton process, Catal. Today, 133–135
(2008) 600–605.
- N. Inchaurrondo, J. Cechini, J. Font, P. Haure, Strategies for
enhanced CWPO of phenol solutions, Appl. Catal., B, 111–112
(2012) 641–648.
- J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation
processes for organic contaminant destruction based on the
Fenton reaction and related chemistry, Crit. Rev. Environ. Sci.
Technol., 36 (2006) 1– 84.
- N. Daneshvar, M.A. Behnajady, Y.Z. Asghar, Photooxidative
degradation of 4-nitrophenol (4-NP) in UV/H2O2 process:
influence of operational parameters and reaction mechanism, J.
Hazard. Mater., 139 (2007) 275–279.
- S. Caudo, C. Genovese, S. Perathoner, G. Centi, Copper-pillared
clays (Cu-PILC) for agro-food wastewater purification with
H2O2, Microporous Mesoporous Mater., 107 (2008) 46–57.
- A.C.K. Yip, F.L. Lam, X. Hu, Chemical-vapor-deposited copper
on acid-activated bentonite clay as an applicable heterogeneous
catalyst for the photo-Fenton-like oxidation of textile organic
pollutants, Ind. Eng. Chem. Res., 44 (2005) 7983–7990.
- H. Feng, L. Le-cheng, Degradation kinetics and mechanisms of
phenol in photo-Fenton process, J. Zhejiang Univ. Sci., 5 (2004)
198–205.
- Z. Mojović, P. Banković, A. Milutinović-Nikolić, J. Dostanić, N.
Jović-Jovičić, D. Jovanović, Al,Cu-pillared clays as catalysts in
environmental protection, Chem. Eng. J., 154 (2009) 149–155.
- C.M. Lousada A.J. Johansson, T. Brinck, M. Jonsson, Reactivity
of metal oxide clusters with hydrogen peroxide and water—a
DFT study evaluating the performance of different exchangecorrelation
functionals, Phys. Chem. Chem. Phys., 15 (2013)
5539–5552.
- S. Caudo, G. Centi, C. Genovese, S. Perathoner, Homogeneous
versus heterogeneous catalytic reactions to eliminate organics
from waste water using H2O2, Top. Catal., 40 (2006) 207–219.
- X. Li, G. Lu, Z. Qu, D. Zhang, S. Liu, The role of titania pillar
in copper-ion exchanged titania pillared clays for the selective
catalytic reduction of NO by propylene, Appl. Catal., A, 398
(2011) 82–87.
- S. Caudo, G. Centi, C. Genovese, S. Perathoner, Copper- and
iron-pillared clay catalysts for the WHPCO of model and real
wastewater streams from olive oil milling production, Appl.
Catal., B, 70 (2007) 437–446.
- APHA, AWWA, WEF, Standard Methods for the Examination
of Water and Wastewater, American Public Health Association,
Washington, D.C., 2005.
- J.J. Su, B.Y. Liu, Y.C. Chang, Identifying an interfering factor
on chemical oxygen demand (COD) determination in piggery
wastewater and eliminating the factor by an indigenous
Pseudomonas stutzeri strain, Lett. Appl. Microbiol., 33 (2001)
440–444.
- R.A. Dobbs, R.T. Williams, Elimination of chloride interference
in the chemical oxygen demand test, Anal. Chem., 35 (1963)
1064–1067.
- Y.W. Kang, M.-J. Cho, K.-Y. Hwang, Correction of hydrogen
peroxide interference on standard chemical oxygen demand
test, Water Res., 33 (1999) 1247–1251.
- I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on
the standard COD test, Water Res., 26 (1992) 107–110.
- Y. Wang, W. Li, A. Irini, A novel and quick method to avoid
H2O2 interference on COD measurement in Fenton system by
Na2SO3 reduction and O2 oxidation, Water Sci. Technol., 68
(2013) 1529–1535.
- S. Zhou, C. Zhang, X. Hu, Y. Wang, R. Xu, C. Xia, H. Zhang, Z.
Song, Catalytic wet peroxide oxidation of 4-chlorophenol over
Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: sensitivity, kinetics
and mechanism, Appl. Clay Sci., 95 (2014) 275–283.
- T. Wu, J.D. Englehardt, A new method for removal of hydrogen
peroxide interference in the analysis of chemical oxygen
demand, Environ. Sci. Technol., 46 (2012) 2291–2298.
- M. Fidaleo, R. Lavecchia, Kinetic study of hydrogen peroxide
decomposition by catalase in a flow-mix microcalorimetric
system, Thermochim. Acta, 402 (2003) 19–26.
- APHA, WEF, Standard methods for the examination of water
and wastewater, American Public Health Association, American
Water Works Association, Water Pollution Control Federation,
Washington, D.C., 1998.
- H. Zhang, J.C. Heung, C.P. Huang, Optimization of Fenton
process for the treatment of landfill leachate, J. Hazard. Mater.,
125 (2005) 166–174.