References

  1. M.N. Timofeeva, S.Ts. Khankhasaeva, E.P. Talsi, V.N. Panchenko, A.V. Golovin, E.Ts. Dashinamzhilova, S.V. Tsybulya, The effect of Fe/Cu ratio in the synthesis of mixed Fe, Cu, Al-clays used as catalysts in phenol peroxide oxidation, Appl. Catal., B, 90 (2009) 618–627.
  2. J. Carriazo, E. Guélou, J. Barrault, J.-M. Tatibouët, S. Moreno, Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays, Appl. Clay Sci., 22 (2003) 303–308.
  3. J. Carriazo, E. Guélou, J. Barrault, J.-M. Tatibouët, R. Molina, S. Moreno, Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity, Water Res., 39 (2005) 3891–3899.
  4. A. El Gaidoumi, A. Loqman, A.C. Benadallah, B. El Bali, A. Kherbeche, Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: optimization study using response surface methodology, Waste Biomass Valor., (2017) 1–9. http://dx.doi. org/10.1007/s12649-017-0117-5.
  5. S.D. Rodrigues Carmen, O.S.G.P. Soares, M.T. Pinho, M.F.R. Pereira, M. Madeira Luis, p-Nitrophenol degradation by heterogeneous Fenton’s oxidation over activated carbon-based catalysts, Appl. Catal., B, 219 (2017) 109–122.
  6. U.S. EPA, National Pesticide Survey: 4-NitroPhenol, National Service Center for Environmental Publications, 2015.
  7. U.S. Department of Health and Human Services (HSS): Toxicological profile for chlorophenols, Sciences International, Inc., Research Triangle Park, Inc, 1999.
  8. Inventory TR: Toxicological Profile for Nitrophenols: 2-Nitrophenols and 4-Nitrophenols, Office of Toxic Substances, Washington, 1992.
  9. P.-T. Huong, B.-K. Lee, J. Kim, C.-H. Lee, Nitrophenols removal from aqueous medium using Fe-nano mesoporous zeolite, Mater. Des., 101 (2016) 210–217.
  10. J. Zhang, C. Wu, A. Jia, B. Hu, Kinetics, equilibrium and thermodynamics of the sorption of p-nitrophenol on two variable charge soils of Southern China, Appl. Surf. Sci., 298 (2014) 95–101.
  11. S. Hamidouche, O. Bouras, F. Zermane, B. Cheknane, M. Houari, J. Debord, M. Harel, J-C. Bollinger, M. Baudu, Simultaneous sorption of 4-nitrophenol and 2-nitrophenol on a hybrid geocomposite based on surfactant-modified pillared-clay and activated carbon, Chem. Eng. J., 279 (2015) 964–972.
  12. Y.-H. Shen, Removal of phenol from water by adsorption–flocculation using organobentonite, Water Res., 36 (2002) 1107–1114.
  13. D. Mantzavinos, E. Psillakis, Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment, J. Chem. Technol. Biotechnol., 79 (2004) 431–454.
  14. J.-L. Wang, G. Zhao, L.-B. Wu, Slurry-phase biological treatment of nitrophenol using bioaugmentation technique, Biomed. Environ. Sci., 18 (2005) 77–81.
  15. Z. Jemaat, M. E. Suárez-Ojeda, J. Pérez, J. Carrera, Simultaneous nitritation and p-nitrophenol removal using aerobic granular biomass in a continuous airlift reactor, Bioresour. Technol., 150 (2013) 307–313.
  16. E.G. Garrido-Ramírez, B.K.G. Theng, M.L. Mora, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-a review, Appl. Clay Sci., 47 (2010) 182–192.
  17. L.F. Liotta, M. Gruttadauria, G. Di carlo, G. Perrini, V. Librando, Heterogeneous catalytic degradation of phenolic substrates: catalysts activity, J. Hazard. Mater., 162 (2009) 588–606.
  18. S. Perathoner, G. Centi, Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial steams, Top. Catal., 33 (2005) 207–224.
  19. E.V. Rokhina, J. Virkutyte, Environmental application of catalytic processes: heterogeneous liquid phase oxidation of phenol with hydrogen peroxide, Crit. Rev. Environ. Sci. Technol., 41 (2011) 125–167.
  20. J. Herney-Ramirez, M.A. Vicente, L.M. Madeira, Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Appl. Catal. B, 98 (2010) 10–26.
  21. N. Inchaurrondo, E. Contreras, P. Haure, Catalyst reutilization in phenol homogeneous cupro-Fenton oxidation, Chem. Eng. J., 251 (2014) 146–157.
  22. O.B. Ayodele, B.H. Hameed, Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process, J. Ind. Eng. Chem., 19 (2013) 966–974.
  23. O.B. Ayodele, J.K. Lim, B.H. Hameed, Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling, Chem. Eng. J., 197 (2012) 181–192.
  24. A. El Gaidoumi, A.C. Benabdallah, B. El Bali, A. Kherbeche, Synthesis and characterization of zeolite HS using natural pyrophyllite as New Clay Source, Arab. J. Sci. Eng., 43 (2017) 191–197.
  25. N. Nath, A. Routaray, Y. Das, T. Maharana, A.K. Sutar, Synthesis and structural studies of polymer-supported transition metal complexes: efficient catalysts for oxidation of phenol, Kinet. Catal., 56 (2015) 718–732.
  26. M. Ddani, A. Meunier, M. Zahraoui, D. Beaufort, M. El Wartiti, C. Fontaine, B. Boukili, B. El Mahi, Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (north east morocco), Clays Clay Miner., 53 (2005) 250–267.
  27. M. Aalaoul, A. Azdimousa, K. El Hammouti, Bentonite’s reserves Geometry of Trebia deposit in Nador region (North eastern Morocco); contributions of geophysical surveys and core drilling campaign, J. Mater. Environ. Sci., 6 (2015) 3564–3573.
  28. L.S. Belaroui, J.M.M. Millet, A. Bengueddach, Characterization of lalithe, a new bentonite-type Algerian clay, for intercalation and catalysts preparation, Catal. Today, 89 (2004) 279–286.
  29. F. Bergaya, G. Lagaly, In: F. Bergaya, G. Lagaly, Eds., Handbook of Clay Science, Purification of natural clays, Elsevier, Amsterdam, 2013, pp. 213–219.
  30. R. Ben Achma, A. Ghorbel, A. Dafinov, F. Medina, Coppersupported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol, Appl. Catal., A, 349 (2008) 20–28.
  31. H. Khalaf, O. Bouras, V. Perrichon, Synthesis and characterization of Al-pillared and cationic surfactant modified Algerian bentonite, Microporous Mater., 8 (1997) 141–150.
  32. P.T. Hang, G.W. Brindley, Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII), Clays Clay Miner., 18 (1970) 203–212.
  33. G. Rytwo, C. Serben, S. Nir, L. Margulies, Use of methylene blue and crystal violet for determination of exchangeable cations in montmorillonite, Clays Clay Miner., 39 (1991) 551–555.
  34. H.-J. Muñoz, C. Blanco, A. Gil, M.-Á. Vicente, L.-A. Galeano, Preparation of Al/Fe-pillared clays: effect of the starting mineral, Materials, 10 (2017) 1364.
  35. D. Zhou, Z. Zhang, J. Tang, X. Zhang, Q. Wang, L. Liao, Influence of different exchangeable cations (Li+, Na+ and Ca2+) on the modification effects and properties of organomontmorillonites used in oil-based drilling fluids/muds, RSC Adv., 5 (2015) 90281–90287.
  36. S.A. Hassan, F.Z. Yehia, H.A. Hassan, S. Sadek, A. Darwish, Various characteristics and catalytic performance of iron (II) phthalocyanine immobilized onto titania- and vanadia-pillared bentonite clay in in situ polymerization of methyl methacrylate: an attempt to synthesize novel polymer/iron phthalocyanine/pillared clay nanocomposites, J. Mol. Catal., A, 332 (2010) 93–105.
  37. S. Azarkan, A. Peña, K. Draoui, C.I. Sainz-Díaz, Adsorption of two fungicides on natural clays of Morocco, Appl. Clay Sci., 123 (2016) 37–46.
  38. I. Daou, O. Zegaoui, R. Chfaira, H. Ahlafi, H. Moussout, Physicochemical characterization and kinetic study of methylene blue adsorption onto a Moroccan Bentonite, Int. J. Sci. Res. Pub., 5 (2015) 293–301.
  39. I. Daou, O. Zegaoui, A. Amachrouq, Study of the effect of an acid treatment of a natural Moroccan bentonite on its physicochemical and adsorption properties, Water Sci. Technol., 75 (2017) 1098–1117.
  40. H.Y. Liu, T. Shen, T.S. Li, P. Yuan, G. Shi, X.J. Bao, Green synthesis of zeolites from a natural aluminosilicate mineral rectorite: effects of thermal treatment temperature, Appl. Clay Sci., 90 (2014) 53–60.
  41. E. Eren, B. Afsin, An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study, J. Hazard. Mater., 151 (2018) 682–691.
  42. S.W. Wang, Y.H. Dong, M.L. He, L. Chen, X.J. Yu, Characterization of GMZ bentonite and its application in the adsorption of Pb(II) from aqueous solutions, Appl. Clay Sci., 43 (2009) 164–171.
  43. P. Yuan, F. Annabi-Bergaya, Q. Tao, M.D. Fan, Z.W. Liu, J.X. Zhu, H.P. He, T.H. Chen, A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/ pillared clay, J. Colloid Interface Sci., 324 (2008) 142–149.
  44. M. El Miz, H. Akichoh, D. Berraaouan, S. Salhi, A. Tahani, Chemical and physical characterization of Moroccan bentonite taken from Nador (North of Morocco), Am. J. Chem., 7 (2017) 105–112.
  45. M.A. De Leoῐn, J. Castiglionia, J. Bussi, M. Sergio, Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process, Catal. Today, 133–135 (2008) 600–605.
  46. N. Inchaurrondo, J. Cechini, J. Font, P. Haure, Strategies for enhanced CWPO of phenol solutions, Appl. Catal., B, 111–112 (2012) 641–648.
  47. J. Pignatello, E. Oliveros, A. MacKay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Environ. Sci. Technol., 36 (2006) 1– 84.
  48. N. Daneshvar, M.A. Behnajady, Y.Z. Asghar, Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism, J. Hazard. Mater., 139 (2007) 275–279.
  49. S. Caudo, C. Genovese, S. Perathoner, G. Centi, Copper-pillared clays (Cu-PILC) for agro-food wastewater purification with H2O2, Microporous Mesoporous Mater., 107 (2008) 46–57.
  50. A.C.K. Yip, F.L. Lam, X. Hu, Chemical-vapor-deposited copper on acid-activated bentonite clay as an applicable heterogeneous catalyst for the photo-Fenton-like oxidation of textile organic pollutants, Ind. Eng. Chem. Res., 44 (2005) 7983–7990.
  51. H. Feng, L. Le-cheng, Degradation kinetics and mechanisms of phenol in photo-Fenton process, J. Zhejiang Univ. Sci., 5 (2004) 198–205.
  52. Z. Mojović, P. Banković, A. Milutinović-Nikolić, J. Dostanić, N. Jović-Jovičić, D. Jovanović, Al,Cu-pillared clays as catalysts in environmental protection, Chem. Eng. J., 154 (2009) 149–155.
  53. C.M. Lousada A.J. Johansson, T. Brinck, M. Jonsson, Reactivity of metal oxide clusters with hydrogen peroxide and water—a DFT study evaluating the performance of different exchangecorrelation functionals, Phys. Chem. Chem. Phys., 15 (2013) 5539–5552.
  54. S. Caudo, G. Centi, C. Genovese, S. Perathoner, Homogeneous versus heterogeneous catalytic reactions to eliminate organics from waste water using H2O2, Top. Catal., 40 (2006) 207–219.
  55. X. Li, G. Lu, Z. Qu, D. Zhang, S. Liu, The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene, Appl. Catal., A, 398 (2011) 82–87.
  56. S. Caudo, G. Centi, C. Genovese, S. Perathoner, Copper- and iron-pillared clay catalysts for the WHPCO of model and real wastewater streams from olive oil milling production, Appl. Catal., B, 70 (2007) 437–446.
  57. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C., 2005.
  58. J.J. Su, B.Y. Liu, Y.C. Chang, Identifying an interfering factor on chemical oxygen demand (COD) determination in piggery wastewater and eliminating the factor by an indigenous Pseudomonas stutzeri strain, Lett. Appl. Microbiol., 33 (2001) 440–444.
  59. R.A. Dobbs, R.T. Williams, Elimination of chloride interference in the chemical oxygen demand test, Anal. Chem., 35 (1963) 1064–1067.
  60. Y.W. Kang, M.-J. Cho, K.-Y. Hwang, Correction of hydrogen peroxide interference on standard chemical oxygen demand test, Water Res., 33 (1999) 1247–1251.
  61. I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on the standard COD test, Water Res., 26 (1992) 107–110.
  62. Y. Wang, W. Li, A. Irini, A novel and quick method to avoid H2O2 interference on COD measurement in Fenton system by Na2SO3 reduction and O2 oxidation, Water Sci. Technol., 68 (2013) 1529–1535.
  63. S. Zhou, C. Zhang, X. Hu, Y. Wang, R. Xu, C. Xia, H. Zhang, Z. Song, Catalytic wet peroxide oxidation of 4-chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-pillared clays: sensitivity, kinetics and mechanism, Appl. Clay Sci., 95 (2014) 275–283.
  64. T. Wu, J.D. Englehardt, A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand, Environ. Sci. Technol., 46 (2012) 2291–2298.
  65. M. Fidaleo, R. Lavecchia, Kinetic study of hydrogen peroxide decomposition by catalase in a flow-mix microcalorimetric system, Thermochim. Acta, 402 (2003) 19–26.
  66. APHA, WEF, Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, D.C., 1998.
  67. H. Zhang, J.C. Heung, C.P. Huang, Optimization of Fenton process for the treatment of landfill leachate, J. Hazard. Mater., 125 (2005) 166–174.