References

  1. S. Park, Y. Moon, J.O. Kim, Evaluation of the image analysis method using statistics for determining the floc size and settling velocity in ballasted flocculation, Desal. Wat. Treat., 99 (2017) 220–227.
  2. I. Delpla, A.V. Jung, E. Baures, M.C. Lement, O. Thomas, Impacts of climate change on surface water quality in relation to drinking water production, Environ. Int., 35 (2009) 1225–1233.
  3. C. Desjardins, B. Koudjonou, R. Desjardins, Laboratory study of ballasted flocculation, Water Res., 36 (2002) 744–754.
  4. J.C. Young, F.G. Edwards, Fundamentals of ballasted flocculation reactions, Proc. Water Environ. Fed., 14 (2000) 56–80.
  5. C. Cailleaux, E. Pujol, F.D. Dianous, J. Drouton, Study of weighted flocculation in view of a new type of clarifier, J. Water Supply Res. Technol. AQUA, 41 (1992) 18–27.
  6. K.H. Kwon, S.W. Kim, L.H. Kim, J.H. Kim, S. Lee, K.S. Min, Particle removal properties of stormwater runoff with a lab-scale vortex separator, Desal. Wat. Treat., 38 (2012) 301–305.
  7. W. Kurtz, J.G. Muller, A. Laurence, R.D. Smith, P.J. Young, Pilot testing of high rate physical-chemical treatment (HRPCT) for wet weather treatment, Proc. Water Environ. Fed., 8 (2003) 452–464.
  8. J.P. O’Hare, T. Perry, Investigating treatment options to meet a 70 ug/L phosphorus discharge limit for the Boise River in Idaho, Proc. Water Environ. Fed., 16 (2010) 908–913.
  9. J. Cullivan, R. Williams, T. Dyakowski, C. Cross, New understanding of a hydrocyclone flow field and separation mechanism from computational fluid dynamics, Miner. Eng., 17 (2004) 651–660.
  10. S. Kawatra, A. Bakshi, M. Rusesky, The effect of slurry viscosity on hydrocyclone classification, Int. J. Miner. Process., 48 (1996) 39–50.
  11. L.-Y. Chu, W.-M. Chen, X.-Z. Lee, Effect of structural modification on hydrocyclone performance, Sep. Purif. Technol., 21 (2000) 71–86.
  12. M. Fisher, R. Flack, Velocity distributions in a hydrocyclone separator, Exp. Fluids, 32 (2002) 302–312.
  13. J.H. Park, Separation of Reservoir Sediment by Using Hydrocyclone, Kyunghee University, Korea, 2002.
  14. A. Majumder, H. Shah, P. Shukla, J. Barnwal, Effect of operating variables on shape of “fish-hook” curves in cyclones, Miner. Eng., 20 (2007) 204–206.
  15. M. Azadi, M. Azadi, A. Mohebbi, A CFD study of the effect of cyclone size on its performance parameters, J. Hazard. Mater., 182 (2010) 835–841.
  16. K.W. Chu, B. Wang, A.B. Yu, A. Vince, CFD-DEM modelling of multiphase flow in dense medium cyclones, Powder Technol., 193 (2009) 235–247.
  17. W.P. Martignoni, S. Bernardo, C.L. Quintani, Evaluation of cyclone geometry and its influence on performance parameters by computational fluid dynamics (CFD), Braz. J. Chem. Eng., 24 (2007) 83–94.
  18. B. Wang, K. Chu, A. Yu, Numerical study of particle−fluid flow in a hydrocyclone, Ind. Eng. Chem. Res., 46 (2007) 4695–4705.
  19. F. Ntengwe, L.K. Witika, Optimization of the operating density and particle size distribution of the cyclone overflow to enhance the recovery of the flotation of copper sulphide and oxide minerals, J. S. Afr. Inst. Min. Metall., 111 (2011) 295–300.
  20. C.G. Speziale, S. Thangam, Analysis of an RNG Based Turbulence Model for Separated Flows, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1992. Available at: https://ntrs.nasa.gov/search.jsp?R=19920010431.
  21. W.D. Griffiths, F. Boysan, Computational fluid dynamics (CFD) and empirical modelling of the performance of a number of cyclone samplers, J. Aerosol Sci., 27 (1996) 281–304.
  22. M.E. Nnacer, G. Guevremont, T. Djeridane, S. Sreekanth, T. Lucas, Blade Air Cooling Feed System CFD Analysis and Validation, ASME Turbo Expo 2007: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2007, pp. 1171–1180.
  23. M. Nijemeisland, A.G. Dixon, Comparison of CFD simulations to experiment for convective heat transfer in a gas–solid fixed bed, Chem. Eng. J., 82 (2001) 231–246.
  24. H. Yurdem, V. Demir, A. Degirmencioglu, Development of a mathematical model to predict clean water head losses in hydrocyclone filters in drip irrigation systems using dimensional analysis, Biosyst. Eng., 105 (2010) 495–506.
  25. Z.-S. Bai, H.-L. Wang, Crude oil desalting using hydrocyclones, Chem. Eng. Res. Design, 85 (2007) 1586–1590.
  26. Z.S. Bai, H.L. Wang, S.T. Tu, Removal of catalyst particles from oil slurry by hydrocyclone, Sep. Sci. Technol., 44 (2009) 2067–2077.