References

  1. A. Keck, J. Klein, M. Kudlich, A. Stolz, H.J. Knachmuss, R. Mattes, Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6, Appl. Environ. Microbiol., 63 (1997) 3684–3690.
  2. A.M.T. Mata, A. Ligneul, N. Lourençoc, H.M. Pinheiro, Advanced oxidation for aromatic amine mineralization after aerobic granular sludge treatment of an azo dye containing wastewater, Desal. Water Treat., 91 (2017) 168–174.
  3. F. Xu, W. Tan, H. Liu, D. Li, Y. Li, M. Wang, Immobilization of PDMS-SiO2-TiO2 composite for the photocatalytic degradation of dye AO-7, Water Sci. Technol.,74 (2016) 1680–1688.
  4. W. Wang, M. Yang, Y. Ku, Photoelectrocatalytic decomposition of dye in aqueous solution using Nafion as an electrolyte, Chem. Eng. J., 165 (2010) 273–280.
  5. R.G. Jenita, R.M.A. Jothi, K.G. Gnana, Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye, Res. Chem. Intermed.,43 (2017) 2669–2690.
  6. A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan, Z.A. Alothman, Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
  7. M. Naushad, Z.A. Alothman, M.R. Awual, S.M. Alfadul, T. Ahamad, Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies, Desal. Wat. Treat., 57 (2016) 13527–13533.
  8. A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G. Walker, C. Mangwandi, Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue, Chem. Eng. J., 307 (2017) 264–272.
  9. C. Hu, Y.Z. Wang, Decolorization and biodegradability of photocatalytic treated azo dyes and wool textile wastewater, Chemosphere, 39 (1999) 2107–2115.
  10. J. Kiwi, C. Pulgarin, P. Peringer, M. Gratzel, Beneficial effects of homogeneous photo Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment, Appl. Catal., B, 3 (1993) 85–99.
  11. M. Muthukumar, N. Selvakumar, Studies on the effect of inorganic salts on decolouration of acid dye effluents by ozonation, Dyes Pigm., 62 (2004) 221–228.
  12. R.X. Yuan, S.N. Ramjaun, Z.H. Wang, J.S. Liu, Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds, J. Hazard. Mater., 196 (2011) 173–179.
  13. K. Wang, Y. Hsieh, C. Wu, C. Chang, The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension, Chemosphere, 40 (1999) 389–394.
  14. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol., A, 158 (2003) 27–36.
  15. G.A. Epling, C. Lin, Investigation of retardation effects on the titanium dioxide photodegradation system, Chemosphere, 46 (2002) 937–944.
  16. M. Sökmen, A. Özkan, Decolourising textile wastewater with modified titania: the effects of inorganic anions on the photocatalysis, J. Photochem. Photobiol., A, 147 (2002) 77–81.
  17. K. Wang, J. Zhang, L. Lou, S. Yang, Y. Chen, UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions, J. Photochem. Photobiol., A, 165 (2004) 201–207.
  18. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666–669.
  19. A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183–191.
  20. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110 (2010) 132–145.
  21. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano Lett., 10 (2010) 577–583.
  22. Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature, Chem. Comm., 47 (2011) 2432–2434.
  23. D. Du, P. Li, J. Ouyang, Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst, ACS Appl. Mater. Interfaces, 7 (2015) 26952–26958.
  24. Q. Yang, P. Siu-Kwong, Y. Kam-Chuen, Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrode, J. Power Sources., 311 (2016) 144–152.
  25. S.D. Perera, R.G. Mariano, V. Khiem, N. Nijem, S. Oliver, C. Yves, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  26. N.R. Khalid, E. Ahmed, Z.L. Hong, L. Sana, M. Ahmed, Enhanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation, Curr. Appl. Phys., 13 (2013) 659–663.
  27. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst, ACS Nano., 4 (2010) 381–385.
  28. S. Min, G. Lu, Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction, J. Phys. Chem. C, 115 (2011) 13938–13945.
  29. K. Szymański, A.W. Morawski, S. Mozia, Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane, Chem. Eng. J., 305 (2016) 19–27.
  30. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339–1339.
  31. Y. Wang, M. Li, H. Tang, J. Lu, J.H. Li, Application of graphenemodified electrode for selective detection of dopamine, Electrochem. Commun., 11 (2009) 889–892.
  32. C. Nethravathi, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 46 (2008) 1994–1998.
  33. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45 (2007) 1558–1565.
  34. A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
  35. G. Wang, Z. Yang, X. Li, C. Li, Synthesis of poly(anilineco-oanisidine)-intercalated graphite oxide composite by delamination/reassembling method, Carbon, 43 (2005) 2564–2570.
  36. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282–286.
  37. H.Y. Chen, O. Zahraa, M. Bouchy, Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions, J. Photochem. Photobiol., A, 108 (1997) 37–44.
  38. R. Yuan, S.N. Ramjaun, Z. Wang, J. Liu, Photocatalytic degradation and chlorination of azo dye in saline wastewater: kinetics and AOX formation, Chem. Eng. J., 192 (2012) 171–178.
  39. P.S. Yap, T.T. Lim, Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogendoped TiO2/AC composite, Appl. Catal., B, 101 (2011) 709–717.
  40. A. Rincón, C. Pulgarin, Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection, Appl. Catal., B, 51 (2004) 283–302.
  41. C. Steelink, What is humic acid, J. Chem. Educ., 40 (1963) 379–384.
  42. Z. Niu, T. Ohnuki, E. Simoni, Q. Jin, Z. Chen, W. Wu, Z. Guo, Effects of dissolved and fixed humic acid on Eu(III)/Yb(III) adsorption on aluminum hydroxide: a batch and spectroscopic study, Chem. Eng. J., 351 (2018) 203–209.
  43. J.P. Aguer, C. Richard, Effect of light on humic substances: production of reactive species, Analysis, 27 (1999) 387–390.