References
- A. Keck, J. Klein, M. Kudlich, A. Stolz, H.J. Knachmuss, R.
Mattes, Reduction of azo dyes by redox mediators originating
in the naphthalenesulfonic acid degradation pathway of
Sphingomonas sp. strain BN6, Appl. Environ. Microbiol., 63
(1997) 3684–3690.
- A.M.T. Mata, A. Ligneul, N. Lourençoc, H.M. Pinheiro,
Advanced oxidation for aromatic amine mineralization after
aerobic granular sludge treatment of an azo dye containing
wastewater, Desal. Water Treat., 91 (2017) 168–174.
- F. Xu, W. Tan, H. Liu, D. Li, Y. Li, M. Wang, Immobilization of
PDMS-SiO2-TiO2 composite for the photocatalytic degradation
of dye AO-7, Water Sci. Technol.,74 (2016) 1680–1688.
- W. Wang, M. Yang, Y. Ku, Photoelectrocatalytic decomposition
of dye in aqueous solution using Nafion as an electrolyte,
Chem. Eng. J., 165 (2010) 273–280.
- R.G. Jenita, R.M.A. Jothi, K.G. Gnana, Reduced graphene
oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the
photocatalytic degradation of methylene blue dye, Res. Chem.
Intermed.,43 (2017) 2669–2690.
- A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan, Z.A.
Alothman, Adsorptive removal of toxic dye using Fe3O4–TSC
nanocomposite: equilibrium, kinetic, and thermodynamic
studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
- M. Naushad, Z.A. Alothman, M.R. Awual, S.M. Alfadul,
T. Ahamad, Adsorption of rose Bengal dye from aqueous
solution by amberlite Ira-938 resin: kinetics, isotherms,
and thermodynamic studies, Desal. Wat. Treat., 57 (2016)
13527–13533.
- A.B. Albadarin, M.N. Collins, M. Naushad, S. Shirazian, G.
Walker, C. Mangwandi, Activated lignin-chitosan extruded
blends for efficient adsorption of methylene blue, Chem. Eng.
J., 307 (2017) 264–272.
- C. Hu, Y.Z. Wang, Decolorization and biodegradability of
photocatalytic treated azo dyes and wool textile wastewater,
Chemosphere, 39 (1999) 2107–2115.
- J. Kiwi, C. Pulgarin, P. Peringer, M. Gratzel, Beneficial effects
of homogeneous photo Fenton pretreatment upon the
biodegradation of anthraquinone sulfonate in waste water
treatment, Appl. Catal., B, 3 (1993) 85–99.
- M. Muthukumar, N. Selvakumar, Studies on the effect of
inorganic salts on decolouration of acid dye effluents by
ozonation, Dyes Pigm., 62 (2004) 221–228.
- R.X. Yuan, S.N. Ramjaun, Z.H. Wang, J.S. Liu, Effects of chloride
ion on degradation of Acid Orange 7 by sulfate radical-based
advanced oxidation process: implications for formation of
chlorinated aromatic compounds, J. Hazard. Mater., 196 (2011)
173–179.
- K. Wang, Y. Hsieh, C. Wu, C. Chang, The pH and anion
effects on the heterogeneous photocatalytic degradation
of o-methylbenzoic acid in TiO2 aqueous suspension,
Chemosphere, 40 (1999) 389–394.
- C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M.
Herrmann, Influence of chemical structure of dyes, of pH and
of inorganic salts on their photocatalytic degradation by TiO2
comparison of the efficiency of powder and supported TiO2, J.
Photochem. Photobiol., A, 158 (2003) 27–36.
- G.A. Epling, C. Lin, Investigation of retardation effects on the
titanium dioxide photodegradation system, Chemosphere, 46
(2002) 937–944.
- M. Sökmen, A. Özkan, Decolourising textile wastewater
with modified titania: the effects of inorganic anions on the
photocatalysis, J. Photochem. Photobiol., A, 147 (2002) 77–81.
- K. Wang, J. Zhang, L. Lou, S. Yang, Y. Chen, UV or visible
light induced photodegradation of AO7 on TiO2 particles: the
influence of inorganic anions, J. Photochem. Photobiol., A, 165
(2004) 201–207.
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang,
S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in
atomically thin carbon films, Science, 306 (2004) 666–669.
- A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater., 6
(2007) 183–191.
- M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review
of graphene, Chem. Rev., 110 (2010) 132–145.
- I.V. Lightcap, T.H. Kosel, P.V. Kamat, Anchoring semiconductor
and metal nanoparticles on a two-dimensional catalyst mat.
Storing and shuttling electrons with reduced graphene oxide,
Nano Lett., 10 (2010) 577–583.
- Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Reduced graphene
oxide as a catalyst for hydrogenation of nitrobenzene at room
temperature, Chem. Comm., 47 (2011) 2432–2434.
- D. Du, P. Li, J. Ouyang, Nitrogen-doped reduced graphene
oxide prepared by simultaneous thermal reduction and
nitrogen doping of graphene oxide in air and its application
as an electrocatalyst, ACS Appl. Mater. Interfaces, 7 (2015)
26952–26958.
- Q. Yang, P. Siu-Kwong, Y. Kam-Chuen, Electrochemically
reduced graphene oxide/carbon nanotubes composites as
binder-free supercapacitor electrode, J. Power Sources., 311
(2016) 144–152.
- S.D. Perera, R.G. Mariano, V. Khiem, N. Nijem, S. Oliver, C.
Yves, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2
nanotube composites with enhanced photocatalytic activity,
ACS Catal., 2 (2012) 949–956.
- N.R. Khalid, E. Ahmed, Z.L. Hong, L. Sana, M. Ahmed,
Enhanced photocatalytic activity of graphene-TiO2 composite
under visible light irradiation, Curr. Appl. Phys., 13 (2013)
659–663.
- H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as
a high performance photocatalyst, ACS Nano., 4 (2010) 381–385.
- S. Min, G. Lu, Dye-sensitized reduced graphene oxide
photocatalysts for highly efficient visible-light-driven water
reduction, J. Phys. Chem. C, 115 (2011) 13938–13945.
- K. Szymański, A.W. Morawski, S. Mozia, Humic acids removal
in a photocatalytic membrane reactor with a ceramic UF
membrane, Chem. Eng. J., 305 (2016) 19–27.
- W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J.
Am. Chem. Soc., 80 (1958) 1339–1339.
- Y. Wang, M. Li, H. Tang, J. Lu, J.H. Li, Application of graphenemodified
electrode for selective detection of dopamine,
Electrochem. Commun., 11 (2009) 889–892.
- C. Nethravathi, M. Rajamathi, Chemically modified graphene
sheets produced by the solvothermal reduction of colloidal
dispersions of graphite oxide, Carbon, 46 (2008) 1994–1998.
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A.
Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis
of graphene-based nanosheets via chemical reduction of
exfoliated graphite oxide, Carbon, 45 (2007) 1558–1565.
- A. Lerf, H. He, M. Forster, J. Klinowski, Structure of graphite
oxide revisited, J. Phys. Chem. B, 102 (1998) 4477–4482.
- G. Wang, Z. Yang, X. Li, C. Li, Synthesis of poly(anilineco-oanisidine)-intercalated graphite oxide composite by
delamination/reassembling method, Carbon, 43 (2005)
2564–2570.
- S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas,
E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff,
Graphene-based composite materials, Nature, 442 (2006)
282–286.
- H.Y. Chen, O. Zahraa, M. Bouchy, Inhibition of the adsorption
and photocatalytic degradation of an organic contaminant in an
aqueous suspension of TiO2 by inorganic ions, J. Photochem.
Photobiol., A, 108 (1997) 37–44.
- R. Yuan, S.N. Ramjaun, Z. Wang, J. Liu, Photocatalytic
degradation and chlorination of azo dye in saline wastewater:
kinetics and AOX formation, Chem. Eng. J., 192 (2012) 171–178.
- P.S. Yap, T.T. Lim, Effect of aqueous matrix species on synergistic
removal of bisphenol-A under solar irradiation using nitrogendoped
TiO2/AC composite, Appl. Catal., B, 101 (2011) 709–717.
- A. Rincón, C. Pulgarin, Effect of pH, inorganic ions, organic
matter and H2O2 on E. coli K12 photocatalytic inactivation by
TiO2: implications in solar water disinfection, Appl. Catal., B, 51
(2004) 283–302.
- C. Steelink, What is humic acid, J. Chem. Educ., 40 (1963)
379–384.
- Z. Niu, T. Ohnuki, E. Simoni, Q. Jin, Z. Chen, W. Wu, Z. Guo,
Effects of dissolved and fixed humic acid on Eu(III)/Yb(III)
adsorption on aluminum hydroxide: a batch and spectroscopic
study, Chem. Eng. J., 351 (2018) 203–209.
- J.P. Aguer, C. Richard, Effect of light on humic substances:
production of reactive species, Analysis, 27 (1999) 387–390.