References
- J.-X. Muo, Study on the method of capacitive adsorption
deionization, Technol. Water Treat., 33 (2007) 20–22.
- G.-J. Yin, F.-M. Chen, Progress in capacitive deionization,
Technol. Water Treat., 29 (2003) 63–66.
- H. Oda, Y. Nakagawa, Removal of ionic substances from dilute
solution using activated carbon electrodes, Carbon, 41 (2003)
1037–1047.
- O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of
high surface area activated carbons for double layer capacitors,
Carbon, 43 (2005) 1303–1310.
- D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold,
A. Papastamataki, Electrochemical demineralization of water
with carbon electrodes, Oklahoma Univ. Res. Inst., 4 (1966)
7397–7397.
- R. Atlas, Purification of brackish or sea water using electronic
water purification, Desal. Water Reuse, 4 (2001) 10–17.
- T.J. Welgemoed, C.F. Schutte, Capacitive Deionization
Technology™: an alternative desalination solution, Desalination,
183 (2005) 327–340.
- H.J. Oh, J.H. Lee, H.J. Ahn, Y. Jeong, Y.J. Kim, Nanoporous
activated carbon cloth for capacitive deionization of aqueous
solution, Thin Solid Films, 515 (2006) 220–225.
- R. Kotz, M. Carlen, Principles and applications of electrochemical
capacitors, Electrochim. Acta, 45 (2000) 2483–2498.
- Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotubepolymer
composites: chemistry, processing, mechanical and
electrical properties, Prog. Polym. Sci., 35 (2010) 357–401.
- J.M. Gonzalez-Domínguez, M. González, A. Ansón-Casaos,
A.M. Díezpascual, M.A. Gómez, Effect of various aminated
single-walled carbon nanotubes on the epoxy cross-linking
reactions, J. Phys. Chem., 115 (2011) 7238–7248.
- X.-H. Xin, L. Chen, L. Zhu, Y.-P. Qiu, Effects of operating
parameters and ion characters on the adsorption capacity and
energy consumption in membrane capacitive deionization,
Desalination, 108 (2018) 58–64.
- A.W. Lang, J.F. Ponder, Jr., A.M. Österholm, N.J. Kennard,
R.H. Bulloch, J.R. Reynolds, , Flexible, aqueous-electrolyte
supercapacitors based on water-processable dioxythiophene
polymer/carbon nanotube textile electrodes, J. Mater. Chem. A.,
5 (2017) 23887–23897.
- Y.-F. Wu, Y. Wang, Y.-J. Zhao, R.-G. Wang, S.-C. Xu, Preparation
and application of DBS-PPy/CNTs composite as cathode
material for capacitive deionization process, Technol. Water
Treat., 39 (2013) 24–27.
- Z.U. Khan, T.-T. Yan, L. Shi, D. Zhang, Improved capacitive
deionization by using 3D intercalated graphene sheet–sphere
nanocomposite architectures, Environ, Sci. Nano, 5 (2018)
980–991.
- H. Duan, T. Yan, G. Chen, J. Zhang, L. Shi, D. Zhang,
A facile strategy for the fast construction of porous graphene
frameworks and their enhanced electrosorption performance,
Chem Commun., 53 (2017) 7465–7468.
- S.-H. Li, Y.-Z. Pan, Experimental study on capacitive
deionization with activated carbon fiber electrodes, Ind. Water
Wastewater, 41 (2014) 27–32.
- Z. Wang, T. Yan, L. Shi, D. Zhang, In situ expanding pores of
dodecahedron-like carbon frameworks derived from MOFs for
enhanced capacitive deionization, ACS Appl. Mater. Interfaces,
9 (2017) 15068−15078.
- S.-Q. Shi, Y. Wang, S.-C. Xu, Y.-J. Zhao, Y.-F. Wu, Experimental
study on capacitive deionization of graphite ribbon electrode,
Technol. Water Treat., 39 (2013) 29–32.
- R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van der
Wal, Charge efficiency: a functional tool to probe the doublelayer
structure inside of porous electrodes and application in
the modeling of capacitive deionization, J. Phys. Chem. Lett., 1
(2010) 205–210.
- Z.-S. Zhou, L. Jiang, L.-W. Wang, R.-Z. Wang, P. Gao,
Adsorption/desorption non-equilibrium characteristics of
composite MnCl2-NH3 working pair, J. Shanghai Jiaotong
Univ., 60 (2016) 583–587+594.
- Z. Zhou, C. Ying, H.-L. Fang, The study on electrochemical
polarization of vanadium redox flow battery, Dongfang Electr.
Rev., 28 (2014) 1–7.
- D.-J. You, H. Zhang, J. Chen, A simple model for the vanadium
redox battery, Electrochim. Acta, 54 (2009) 6827–6836.
- B.-J. Hu, Application progress of electrode materials in electro
adsorption desalination, ChengShi Jianshe LiLun Yan Jiu, 16
(2013) 16–18.
- K. Yujin, C. Jaehwan, Improvement of desalination efficiency in
capacitive deionization using a carbon electrode coated with an
ion-exchange polymer, Water Res., 44 (2010) 990.
- L.-L. Liu, A Study of Graphene Used for Constructing
Molecular Junctions and Measuring their Conductance,
Chongqing University, 2016, pp. 31,32.
- Y.-H. Xiang, X.-W. Fu, Q. Tian, Porosity evaluation for porous
electrodes using image processing, Chin. J. Power Sources, 40
(2016) 572–574.
- K. Huang, H. Tang, D.-Y. Liu, S.-Y. Zhu, Z.-Y. Ren, Review
of capacitive deionization technology (second): electrode
materials, Environ. Eng., 34 (2016) 89–100+77.
- M.M. Tomadakis, Viscous permeability of random fiber
structures: comparison of electrical and diffusional estimates
with experimental and analytical results, J. Compos. Mater., 39
(2005) 163–188.
- B. Shapira, E. Avraham, D. Aurbach, Side reactions in capacitive
deionization (CDI) processes: the role of oxygen reduction,
Electrochim. Acta, 220 (2016) 285–295.
- M.S. Gaikwad, C. Balomajumder, Simultaneous electrosorptive
removal of chromium(VI) and fluoride ions by capacitive
deionization (CDI): multicomponent isotherm modeling and
kinetic study, Sep. Purif. Technol., 186 (2017) 272–281.
- M.E. Suss, Size-based ion selectivity of micropore electric double
layers in capacitive deionization electrodes, J. Electrochim. Soc.,
9 (2017) 164.
- W.-W. Tang, D. He, C.-Y. Zhang, T.D. Waite, Optimization of
sulfate removal from brackish water by membrane capacitive
deionization (MCDI), Water Res., 121 (2017) 302–310.