References

  1. J.-X. Muo, Study on the method of capacitive adsorption deionization, Technol. Water Treat., 33 (2007) 20–22.
  2. G.-J. Yin, F.-M. Chen, Progress in capacitive deionization, Technol. Water Treat., 29 (2003) 63–66.
  3. H. Oda, Y. Nakagawa, Removal of ionic substances from dilute solution using activated carbon electrodes, Carbon, 41 (2003) 1037–1047.
  4. O. Barbieri, M. Hahn, A. Herzog, R. Kötz, Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 43 (2005) 1303–1310.
  5. D.D. Caudle, J.H. Tucker, J.L. Cooper, B.B. Arnold, A. Papastamataki, Electrochemical demineralization of water with carbon electrodes, Oklahoma Univ. Res. Inst., 4 (1966) 7397–7397.
  6. R. Atlas, Purification of brackish or sea water using electronic water purification, Desal. Water Reuse, 4 (2001) 10–17.
  7. T.J. Welgemoed, C.F. Schutte, Capacitive Deionization Technology™: an alternative desalination solution, Desalination, 183 (2005) 327–340.
  8. H.J. Oh, J.H. Lee, H.J. Ahn, Y. Jeong, Y.J. Kim, Nanoporous activated carbon cloth for capacitive deionization of aqueous solution, Thin Solid Films, 515 (2006) 220–225.
  9. R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45 (2000) 2483–2498.
  10. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 35 (2010) 357–401.
  11. J.M. Gonzalez-Domínguez, M. González, A. Ansón-Casaos, A.M. Díezpascual, M.A. Gómez, Effect of various aminated single-walled carbon nanotubes on the epoxy cross-linking reactions, J. Phys. Chem., 115 (2011) 7238–7248.
  12. X.-H. Xin, L. Chen, L. Zhu, Y.-P. Qiu, Effects of operating parameters and ion characters on the adsorption capacity and energy consumption in membrane capacitive deionization, Desalination, 108 (2018) 58–64.
  13. A.W. Lang, J.F. Ponder, Jr., A.M. Österholm, N.J. Kennard, R.H. Bulloch, J.R. Reynolds, , Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes, J. Mater. Chem. A., 5 (2017) 23887–23897.
  14. Y.-F. Wu, Y. Wang, Y.-J. Zhao, R.-G. Wang, S.-C. Xu, Preparation and application of DBS-PPy/CNTs composite as cathode material for capacitive deionization process, Technol. Water Treat., 39 (2013) 24–27.
  15. Z.U. Khan, T.-T. Yan, L. Shi, D. Zhang, Improved capacitive deionization by using 3D intercalated graphene sheet–sphere nanocomposite architectures, Environ, Sci. Nano, 5 (2018) 980–991.
  16. H. Duan, T. Yan, G. Chen, J. Zhang, L. Shi, D. Zhang, A facile strategy for the fast construction of porous graphene frameworks and their enhanced electrosorption performance, Chem Commun., 53 (2017) 7465–7468.
  17. S.-H. Li, Y.-Z. Pan, Experimental study on capacitive deionization with activated carbon fiber electrodes, Ind. Water Wastewater, 41 (2014) 27–32.
  18. Z. Wang, T. Yan, L. Shi, D. Zhang, In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization, ACS Appl. Mater. Interfaces, 9 (2017) 15068−15078.
  19. S.-Q. Shi, Y. Wang, S.-C. Xu, Y.-J. Zhao, Y.-F. Wu, Experimental study on capacitive deionization of graphite ribbon electrode, Technol. Water Treat., 39 (2013) 29–32.
  20. R. Zhao, P.M. Biesheuvel, H. Miedema, H. Bruning, A. van der Wal, Charge efficiency: a functional tool to probe the doublelayer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett., 1 (2010) 205–210.
  21. Z.-S. Zhou, L. Jiang, L.-W. Wang, R.-Z. Wang, P. Gao, Adsorption/desorption non-equilibrium characteristics of composite MnCl2-NH3 working pair, J. Shanghai Jiaotong Univ., 60 (2016) 583–587+594.
  22. Z. Zhou, C. Ying, H.-L. Fang, The study on electrochemical polarization of vanadium redox flow battery, Dongfang Electr. Rev., 28 (2014) 1–7.
  23. D.-J. You, H. Zhang, J. Chen, A simple model for the vanadium redox battery, Electrochim. Acta, 54 (2009) 6827–6836.
  24. B.-J. Hu, Application progress of electrode materials in electro adsorption desalination, ChengShi Jianshe LiLun Yan Jiu, 16 (2013) 16–18.
  25. K. Yujin, C. Jaehwan, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 44 (2010) 990.
  26. L.-L. Liu, A Study of Graphene Used for Constructing Molecular Junctions and Measuring their Conductance, Chongqing University, 2016, pp. 31,32.
  27. Y.-H. Xiang, X.-W. Fu, Q. Tian, Porosity evaluation for porous electrodes using image processing, Chin. J. Power Sources, 40 (2016) 572–574.
  28. K. Huang, H. Tang, D.-Y. Liu, S.-Y. Zhu, Z.-Y. Ren, Review of capacitive deionization technology (second): electrode materials, Environ. Eng., 34 (2016) 89–100+77.
  29. M.M. Tomadakis, Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results, J. Compos. Mater., 39 (2005) 163–188.
  30. B. Shapira, E. Avraham, D. Aurbach, Side reactions in capacitive deionization (CDI) processes: the role of oxygen reduction, Electrochim. Acta, 220 (2016) 285–295.
  31. M.S. Gaikwad, C. Balomajumder, Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): multicomponent isotherm modeling and kinetic study, Sep. Purif. Technol., 186 (2017) 272–281.
  32. M.E. Suss, Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes, J. Electrochim. Soc., 9 (2017) 164.
  33. W.-W. Tang, D. He, C.-Y. Zhang, T.D. Waite, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 121 (2017) 302–310.