References
- V.L. Santos, V.R. Linardi, Biodegradation of phenol by
filamentous fungi isolated from industrial effluents —
identification and degradation potential, Process Biochem., 39
(2004) 1001–1006.
- F. Lassouane, S. Amrani, H. Aït-Amar, Evaluation of o-cresol
degradation potential by a strain of Pseudomonas aeruginosa S8,
Desal. Wat. Treat., 51 (2013) 7577–7585.
- E. Diaz, Bacterial degradation of aromatic pollutants: a
paradigm of metabolic versatility, Int. Microbiol., 7 (2004)
173–180.
- Agency for Toxic Substances and Disease Registry, Toxicological
profile for cresols, U.S. Department of Health and Human
Services, Public Health Service, Atlanta, GA, 2008.
- M. Karimi, M. Hassanshahianc, Isolation and characterization
of phenol degrading yeasts from wastewater in the coking plant
of Zarand, Kerman, 2016, Braz. J. Microbiol., 47 (2016) 18–24.
- M. Maeda, A. Itoh, Y. Kawase, Kinetics for aerobic biological
treatment of o-cresol, Biochem. Eng. J., 22 (2005) 97–103.
- P. Saravanan, K. Pakshirajan, P. Saha, Kinetics of phenol and
431 m-cresol biodegradation by an indigenous mixed microbial
culture isolated from a sewage treatment plant, J. Environ. Sci.,
20 (2008) 1508–1513.
- A. Gallego, V.L. Gemini, M.S. Fortunato, P. Dabas., S.L. Rossi,
C.E. Gómez, C. Vescina, E.I. Planes, S.E. Korol, Degradation and
detoxification of cresols in synthetic and industrial wastewater
by an indigenous strain of Pseudomonas putida in aerobic
reactors, Environ. Toxicol., 23 (2008) 664–671.
- S.E. Agarry, B.O. Solomon, Kinetics of batch microbial
degradation of phenols by indigenous Pseudomonas fluorescens,
Int. J. Environ. Sci. Technol., 5 (2008) 223–232.
- P.Y.A. Ahamad, A.A.M. Kunhi, S. Divakar, New metabolic
pathway for o-cresol degradation by Pseudomonas sp. CP4 as
evidenced by 1HNMR spectroscopic studies, World J. Microbiol.
Biotechnol., 17 (2001) 371–377.
- P.Y.A. Aneez-Ahamad, A.A.M. Kunhi, Degradation of phenol
through ortho-cleavage pathway by Pseudomonas stutzeri strain
SPC2., Appl. Microbiol. Lett., 22 (1996) 26–29.
- S.A. Hasana, S. Jabeen, Degradation kinetics and pathway
of phenol by Pseudomonas and Bacillus species, Biotechno.
Biotechnol. Equip., 29 (2015) 45–53.
- C. Vigneshwaran, M. Jerold, K. Vasantharaj, V. Sivasubramanian,
J. Environ. Sci. Toxicol. Food Technol., 10 (2016) 152–160.
- S.K Satpute, I.M. Banat, P.K. Dhakephalkar, A.G. Banpurkar,
B.A. Chopade, Biosurfactants, bioemulsifiers and
exopolysaccharides from marine microorganisms, Biotechnol.
Adv., 28 (2010) 436–450.
- U.D. Gul, G. Donmez, Effects of dodecyl trimethyl
ammoniumbromide surfactant on decolorization of Remazol
Blue by a living Aspergillus versicolor strain, J. Surfactants
Deterg., 15 (2012) 797–803.
- T. Hadibarata, L.A. Adnan, AR. MohdYusoff, A. Yuniarto,
R. Meor, M.F. Ahmad Zubir, A.B. eh ZC Khudhair, M.A. Naser,
Microbial decolorization of an azo dye reactive black 5 using
white-rot fungus Pleurotus eryngii F032, Water Air Soil Pollut.,
224 (2013) 1595.
- G. Ji, H. Zhang, F. Huang, X. Huang, Effects of nonionic
surfactant Triton X-100 on the laccase-catalyzed conversion of
bisphenol A, J. Environ. Sci., 21 (2009) 1486–1490.
- P.-P. Champagne, M.E. Nesheim, J.A. Ramsay, Effect of a nonionic
surfactant, merpol, on dye decolorization of reactive blue
19 by laccase, Enzyme Microb. Technol., 46 (2010) 147–152.
- Y. Zhang, Z. Zeng, G. Zeng, X. Liud, Z. Liu, M. Chen, L. Liu, J. Lie,
G. Xie, Effect of Triton X-100 on the removal of aqueous phenol
by laccase analysed with a combined approach of experiments
and molecular docking, Colloids Surf., B, 97 (2012) 7–12.
- M.-F. Zhou, X.-Z. Yuan, H. Zhong, Z.-F. Liu, H. Li, L.-L. Jiang,
G.M. Zeng, Effect of biosurfactants on laccase production
and phenol biodegradation in solid-state fermentation, Appl.
Biochem. Biotechnol., 164 (2011) 103–114.
- R.D. Rufino, L.A. Sarubbo, G.M. Campos-Takaki, Enhancement
of stability of biosurfactant produced by Candida lypolytica using
industrial residue as substrate, World J. Microbiol. Biotechnol.,
23 (2007) 729–734.
- R. Bhat, K.J. Dayamani, S. Hathwar, R. Hegde, A. Kush,
Exploration and production of rhamnolipid biosurfactants
using native Pseudomonas aeruginosa strains, J. Biol. Biotechnol.,
4 (2015) 157–166.
- H.S. El-Sheshtawy, Selection of Pseudomonas aeruginosa for
biosurfactant production and studies of its antimicrobial
activity, Egyptian J. Petrol., 23 (2014) 1–6.
- G.J. Pacheco, E.M.P. Ciapina, E.B. Gomes, N.P. Junior, 2010,
Biosurfactant production by Rhodococcus erythropolis and
its application to oil removal, Braz. J. Microbiol., 41 (2010)
685–693.
- M. Nitschke, C. Ferraz; G.M. Pastore, Selection of
microorganisms for biosurfactant production using agroindustrial
wastes, Braz. J. Microbiol., 35 (2014) 81–85.
- A. Franzetti, E. Tamburini, I.M. Banat, Application of biological
surface active compounds in remediation technologies. Adv.
Exp. Med. Biol., 672 (2010) 121–134.
- S.W. Kang, Y.B. Kim, J.D. Shin, E.K. Kim, Enhanced
biodegradation of hydrocarbons in soil by microbial
biosurfactant, sophorolipid, Appl. Biochem. Biotechnol., 160
(2010) 780–790.
- S.G. Kapadia, B.N. Yagnik, Current trend and potential for
microbial biosurfactants, Asian J. Exp. Biol. Sci., 4 (2013) 1–8.
- B. Zegura, E. Heath, A.C. Ernosa, M. Filipic, Combination of in
vitro bioassays for the determination of cytotoxic and genotoxic
potential of wastewater, surface water and drinking water
samples, Chemosphere, 75 (2009) 1453–1460.
- J.P. Jadhav, D.C. Kalyani, A.A. Telke, S.S. Phugare,
S.P. Govindwar, Evaluation of the efficacy of a bacterial
consortium for the removal of color, reduction of heavy metals,
and toxicity from textile dye effluent, Bioresour. Technol., 101
(2010) 165–173.
- M.D. Bagatini, T.G. Vasconcelos, H.D. Laughinghouse,
A.F. Martins, S.B. Tedesco, Biomonitoring hospital effluents by
the Allium cepa L. test, Bull. Environ. Contam. Toxicol., 82 (2009)
590–592.
- D.M. Leme, M.A. Marin-Morales, Allium cepa test in
environmental monitoring: a review on its application, Mut.
Res., 682 (2009) 71–81.
- M. Cheesborough, District laboratory practice in tropical
countries. U.K. Cambridge University Press. Cunningham,
R.P. DNA repair: caretakers of the genome, Curr. Biol., 7 (2000)
576–579.
- A. Kumar, S. Kumar, S. Kumar, Biodegradation kinetics of
phenol and catechol using Pseudomonas putida MTCC 1194,
Biochem. Eng. J., 22 (2005) 151–159.
- S. Aiba, M. Shoda, M. Nagatani, Kinetics of product inhibition
in alcohol fermentation, Biotechnol. Bioeng., 10 (1968) 845–864.
- J. Bai, J.P. Wen, H.M. Li, Y. Jiang, Kinetic modeling of growth
and biodegradation of phenol and m-cresol using Alcaligenes
faecalis, Process Biochem., 42 (2007) 510–517.
- A. Banerjee, A.K. Ghoshal, Phenol degradation by Bacillus
cereus: pathway and kinetic modelling, Bioresour. Technol., 101
(2010) 5501–5507.
- G.D. Hegeman, Synthesis of the enzymes of the mandelate
pathway by Pseudomonas putida. Synthesis of the enzymes in the
wild type, J. Bacteriol., 91 (1966) 1140–1154.
- O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein
measurement by the Folin phenol reagent, J. Biol. Chem., 193
(1951) 265–275.
- R. Thavashi, S. Sharma, S. Jayalakshmi, Evaluation of screening
methods for the isolation of biosurfactant producing marine
bacteria, J. Pet. Environ. Biotechnol., (2011) 2157–7463.
- R. Mohanram, C. Jagtap, P. Kumar, Mar. Pollut. Bull., 105 (2016)
131–138.
- H.S. El-Sheshtawy, I. Aiad, M.E. Osman, A.A. Abo Elnasr,
A.S. Kobisy, Production of biosurfactant from Bacillus
licheniformis for microbial enhanced oil recovery and inhibition
the growth of sulfate reducing bacteria, Egyptian J. Petrol., 24
(2015) 155–162.
- V. Walter, C. Syldatk, R. Hausmann, Biosurfactants: screening
concepts for the isolation of biosurfactant producing
microorganisms, Adv. Exp. Med. Biol., 672 (2010) 1–13.
- S.K. Satpute, B.D. Bhawsar, P.K. Dhakephalkar, B.A. Chopade,
Assessment of different screening methods for selecting
biosurfactant producing marine bacteria, Ind. J. Mar. Sci., 37
(2008) 243–250.
- A.M. Elazazzy, T.S. Abdelmoneim, O.A. Almaghrabi, Isolation
and characterization of biosurfactant production under extreme
environmental conditions by alkali-halo-thermophilic bacteria
from Saudi Arabia, Saudi. J. Biol. Sci., 22 (2015) 466–475.
- A. Khopade, R. Biao, X. Liu, K. Mahadik, L. Zhang, C. Kokare,
Production and stability studies of biosurfactant isolated from
marine Nocardiopsis sp. B4, Desalination, 285 (2012) 198–204.
- S.K. Arora, J. Sony, A. Sharma, M. Taneja, Production and
characterization of biosurfactant from Pseudomonas sp, Int.
J. Curr. Microbiol. App. Sci., 4 (2015) 245–253.
- M.B.S. Donio, S.F.A. Ronica, V. Thanga Viji, S. Velmurugan,
J. Adlin Jenifer, M. Michaelbabu, Isolation and characterization
of halophilic Bacillus sp. BS3 able to produce pharmacologically
important biosurfactants, Asian Pac. J. Trop. Med., 6 (2013)
876–883.
- G. Fiskesjo, The Allium test as a standard in environmental
monitoring, Hereditas, 102 (1985) 98–112.
- M. Yıldız, I.H. Cigerci, M. Konuk, A.F. Fidan, H. Terzi,
Determination of genotoxic effects of copper sulphate and cobalt
chloride in Allium cepa root cells by chromosome aberration and
comet assays, Chemosphere, 75 (2009) 934–938.
- N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A single
technique for quantification of low levels of DNA damage in
individual cells, Exp. Cell Res., 175 (1988) 184–191.
- A. Kocyigit, H. Keles, S. Selek, S. Guzel, H. Celik, O. Erel,
Increased DNA damage and oxidative stress in patients with
cutaneous leishmaniasis, Mut. Res., 585 (2005) 71–78.
- A. Banerjee, A.K. Ghoshal, Isolation and characterization
of hyper phenol tolerant Bacillus sp. from oil refinery and
exploration sites, J. Hazard. Mater., 176 (2010) 85–91.
- Y. Kaymaz, A. Babaoğlu, N.K. Pazarlioglu, Biodegradation
kinetics of o-cresol by Pseudomonas putida DSM 548 (pJP4) and
o-cresol removal in a batch-recirculation bioreactor system,
Electron. J. Biotechnol., 15 (2012) 1–10.
- Z. Bakhshi, G. Najafpour, E. Kariminezhad, R. Pishgar,
N. Mousavi, T. Taghizade, Growth kinetic models for phenol
biodegradation in a batch culture of Pseudomonas putida,
Environ. Technol., 32 (2011) 1835–1841.
- S. Kar, T. Swaminathan, A. Baradarajan, Biodegradation of
phenol and cresol isomer mixtures by Arthrobacter, World
J. Microbiol. Biotechnol., 13 (1997) 659–663.
- K.L. Ho, B. Lin, Y.Y. Chen, Biodegradation of phenol using
Corynebacterium sp. DJ1 aerobic granules, Bioresour. Technol.,
100 (2009) 5051–5055.
- A.M. Ahamad, Phenol degradation by Pseudomonas aeruginosa,
Environ. Sci. Health, 30 (1995) 99–103.
- T.A.A. Moussa, M.S. Mohamed, N. Samak, Production and
characterization of di-rhamnolipid produced by Pseudomonas
aeruginosa TMN, Braz. J. Chem. Eng., 31 (2014) 867–880.
- F.A. Bezza, M.N. Evans, K. Chirwa, Biosurfactant enhanced
bioremediation of aged polycyclic aromatic hydrocarbons
(PAHs) in creosote contaminated soil, Chemosphere, 144 (2016)
635–644.
- L.K.S. Chauhan, P.N. Saxena, V. Sundararaman, S.K. Gupta,
Diuron induced cytological and ultrastructural alterations in
the root meristem cells of Allium cepa, Pestic. Biochem. Physiol.,
62 (1998) 152–163.
- R. Rucinska, R. Sobkowiak, E.A. Gwozdz, Genotoxicity of lead
in lupin root cells as evaluated by the comet assay, Cell. Mol.
Biol. Lett., 9 (2004) 519–528.
- Z. Moussa, M. Chebl, D. Patra, Interaction of curcumin with
1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes:
intercalation of rhamnolipids enhances membrane fluidity,
permeability and stability of drug molecule, Colloids Surf.
B Biointerfaces, 149 (2017) 30–37.