References

  1. V.L. Santos, V.R. Linardi, Biodegradation of phenol by filamentous fungi isolated from industrial effluents — identification and degradation potential, Process Biochem., 39 (2004) 1001–1006.
  2. F. Lassouane, S. Amrani, H. Aït-Amar, Evaluation of o-cresol degradation potential by a strain of Pseudomonas aeruginosa S8, Desal. Wat. Treat., 51 (2013) 7577–7585.
  3. E. Diaz, Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility, Int. Microbiol., 7 (2004) 173–180.
  4. Agency for Toxic Substances and Disease Registry, Toxicological profile for cresols, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2008.
  5. M. Karimi, M. Hassanshahianc, Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman, 2016, Braz. J. Microbiol., 47 (2016) 18–24.
  6. M. Maeda, A. Itoh, Y. Kawase, Kinetics for aerobic biological treatment of o-cresol, Biochem. Eng. J., 22 (2005) 97–103.
  7. P. Saravanan, K. Pakshirajan, P. Saha, Kinetics of phenol and 431 m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant, J. Environ. Sci., 20 (2008) 1508–1513.
  8. A. Gallego, V.L. Gemini, M.S. Fortunato, P. Dabas., S.L. Rossi, C.E. Gómez, C. Vescina, E.I. Planes, S.E. Korol, Degradation and detoxification of cresols in synthetic and industrial wastewater by an indigenous strain of Pseudomonas putida in aerobic reactors, Environ. Toxicol., 23 (2008) 664–671.
  9. S.E. Agarry, B.O. Solomon, Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescens, Int. J. Environ. Sci. Technol., 5 (2008) 223–232.
  10. P.Y.A. Ahamad, A.A.M. Kunhi, S. Divakar, New metabolic pathway for o-cresol degradation by Pseudomonas sp. CP4 as evidenced by 1HNMR spectroscopic studies, World J. Microbiol. Biotechnol., 17 (2001) 371–377.
  11. P.Y.A. Aneez-Ahamad, A.A.M. Kunhi, Degradation of phenol through ortho-cleavage pathway by Pseudomonas stutzeri strain SPC2., Appl. Microbiol. Lett., 22 (1996) 26–29.
  12. S.A. Hasana, S. Jabeen, Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species, Biotechno. Biotechnol. Equip., 29 (2015) 45–53.
  13. C. Vigneshwaran, M. Jerold, K. Vasantharaj, V. Sivasubramanian, J. Environ. Sci. Toxicol. Food Technol., 10 (2016) 152–160.
  14. S.K Satpute, I.M. Banat, P.K. Dhakephalkar, A.G. Banpurkar, B.A. Chopade, Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms, Biotechnol. Adv., 28 (2010) 436–450.
  15. U.D. Gul, G. Donmez, Effects of dodecyl trimethyl ammoniumbromide surfactant on decolorization of Remazol Blue by a living Aspergillus versicolor strain, J. Surfactants Deterg., 15 (2012) 797–803.
  16. T. Hadibarata, L.A. Adnan, AR. MohdYusoff, A. Yuniarto, R. Meor, M.F. Ahmad Zubir, A.B. eh ZC Khudhair, M.A. Naser, Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032, Water Air Soil Pollut., 224 (2013) 1595.
  17. G. Ji, H. Zhang, F. Huang, X. Huang, Effects of nonionic surfactant Triton X-100 on the laccase-catalyzed conversion of bisphenol A, J. Environ. Sci., 21 (2009) 1486–1490.
  18. P.-P. Champagne, M.E. Nesheim, J.A. Ramsay, Effect of a nonionic surfactant, merpol, on dye decolorization of reactive blue 19 by laccase, Enzyme Microb. Technol., 46 (2010) 147–152.
  19. Y. Zhang, Z. Zeng, G. Zeng, X. Liud, Z. Liu, M. Chen, L. Liu, J. Lie, G. Xie, Effect of Triton X-100 on the removal of aqueous phenol by laccase analysed with a combined approach of experiments and molecular docking, Colloids Surf., B, 97 (2012) 7–12.
  20. M.-F. Zhou, X.-Z. Yuan, H. Zhong, Z.-F. Liu, H. Li, L.-L. Jiang, G.M. Zeng, Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation, Appl. Biochem. Biotechnol., 164 (2011) 103–114.
  21. R.D. Rufino, L.A. Sarubbo, G.M. Campos-Takaki, Enhancement of stability of biosurfactant produced by Candida lypolytica using industrial residue as substrate, World J. Microbiol. Biotechnol., 23 (2007) 729–734.
  22. R. Bhat, K.J. Dayamani, S. Hathwar, R. Hegde, A. Kush, Exploration and production of rhamnolipid biosurfactants using native Pseudomonas aeruginosa strains, J. Biol. Biotechnol., 4 (2015) 157–166.
  23. H.S. El-Sheshtawy, Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity, Egyptian J. Petrol., 23 (2014) 1–6.
  24. G.J. Pacheco, E.M.P. Ciapina, E.B. Gomes, N.P. Junior, 2010, Biosurfactant production by Rhodococcus erythropolis and its application to oil removal, Braz. J. Microbiol., 41 (2010) 685–693.
  25. M. Nitschke, C. Ferraz; G.M. Pastore, Selection of microorganisms for biosurfactant production using agroindustrial wastes, Braz. J. Microbiol., 35 (2014) 81–85.
  26. A. Franzetti, E. Tamburini, I.M. Banat, Application of biological surface active compounds in remediation technologies. Adv. Exp. Med. Biol., 672 (2010) 121–134.
  27. S.W. Kang, Y.B. Kim, J.D. Shin, E.K. Kim, Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid, Appl. Biochem. Biotechnol., 160 (2010) 780–790.
  28. S.G. Kapadia, B.N. Yagnik, Current trend and potential for microbial biosurfactants, Asian J. Exp. Biol. Sci., 4 (2013) 1–8.
  29. B. Zegura, E. Heath, A.C. Ernosa, M. Filipic, Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples, Chemosphere, 75 (2009) 1453–1460.
  30. J.P. Jadhav, D.C. Kalyani, A.A. Telke, S.S. Phugare, S.P. Govindwar, Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent, Bioresour. Technol., 101 (2010) 165–173.
  31. M.D. Bagatini, T.G. Vasconcelos, H.D. Laughinghouse, A.F. Martins, S.B. Tedesco, Biomonitoring hospital effluents by the Allium cepa L. test, Bull. Environ. Contam. Toxicol., 82 (2009) 590–592.
  32. D.M. Leme, M.A. Marin-Morales, Allium cepa test in environmental monitoring: a review on its application, Mut. Res., 682 (2009) 71–81.
  33. M. Cheesborough, District laboratory practice in tropical countries. U.K. Cambridge University Press. Cunningham, R.P. DNA repair: caretakers of the genome, Curr. Biol., 7 (2000) 576–579.
  34. A. Kumar, S. Kumar, S. Kumar, Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194, Biochem. Eng. J., 22 (2005) 151–159.
  35. S. Aiba, M. Shoda, M. Nagatani, Kinetics of product inhibition in alcohol fermentation, Biotechnol. Bioeng., 10 (1968) 845–864.
  36. J. Bai, J.P. Wen, H.M. Li, Y. Jiang, Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis, Process Biochem., 42 (2007) 510–517.
  37. A. Banerjee, A.K. Ghoshal, Phenol degradation by Bacillus cereus: pathway and kinetic modelling, Bioresour. Technol., 101 (2010) 5501–5507.
  38. G.D. Hegeman, Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. Synthesis of the enzymes in the wild type, J. Bacteriol., 91 (1966) 1140–1154.
  39. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement by the Folin phenol reagent, J. Biol. Chem., 193 (1951) 265–275.
  40. R. Thavashi, S. Sharma, S. Jayalakshmi, Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria, J. Pet. Environ. Biotechnol., (2011) 2157–7463.
  41. R. Mohanram, C. Jagtap, P. Kumar, Mar. Pollut. Bull., 105 (2016) 131–138.
  42. H.S. El-Sheshtawy, I. Aiad, M.E. Osman, A.A. Abo Elnasr, A.S. Kobisy, Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria, Egyptian J. Petrol., 24 (2015) 155–162.
  43. V. Walter, C. Syldatk, R. Hausmann, Biosurfactants: screening concepts for the isolation of biosurfactant producing microorganisms, Adv. Exp. Med. Biol., 672 (2010) 1–13.
  44. S.K. Satpute, B.D. Bhawsar, P.K. Dhakephalkar, B.A. Chopade, Assessment of different screening methods for selecting biosurfactant producing marine bacteria, Ind. J. Mar. Sci., 37 (2008) 243–250.
  45. A.M. Elazazzy, T.S. Abdelmoneim, O.A. Almaghrabi, Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia, Saudi. J. Biol. Sci., 22 (2015) 466–475.
  46. A. Khopade, R. Biao, X. Liu, K. Mahadik, L. Zhang, C. Kokare, Production and stability studies of biosurfactant isolated from marine Nocardiopsis sp. B4, Desalination, 285 (2012) 198–204.
  47. S.K. Arora, J. Sony, A. Sharma, M. Taneja, Production and characterization of biosurfactant from Pseudomonas sp, Int. J. Curr. Microbiol. App. Sci., 4 (2015) 245–253.
  48. M.B.S. Donio, S.F.A. Ronica, V. Thanga Viji, S. Velmurugan, J. Adlin Jenifer, M. Michaelbabu, Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants, Asian Pac. J. Trop. Med., 6 (2013) 876–883.
  49. G. Fiskesjo, The Allium test as a standard in environmental monitoring, Hereditas, 102 (1985) 98–112.
  50. M. Yıldız, I.H. Cigerci, M. Konuk, A.F. Fidan, H. Terzi, Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays, Chemosphere, 75 (2009) 934–938.
  51. N.P. Singh, M.T. McCoy, R.R. Tice, E.L. Schneider, A single technique for quantification of low levels of DNA damage in individual cells, Exp. Cell Res., 175 (1988) 184–191.
  52. A. Kocyigit, H. Keles, S. Selek, S. Guzel, H. Celik, O. Erel, Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis, Mut. Res., 585 (2005) 71–78.
  53. A. Banerjee, A.K. Ghoshal, Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites, J. Hazard. Mater., 176 (2010) 85–91.
  54. Y. Kaymaz, A. Babaoğlu, N.K. Pazarlioglu, Biodegradation kinetics of o-cresol by Pseudomonas putida DSM 548 (pJP4) and o-cresol removal in a batch-recirculation bioreactor system, Electron. J. Biotechnol., 15 (2012) 1–10.
  55. Z. Bakhshi, G. Najafpour, E. Kariminezhad, R. Pishgar, N. Mousavi, T. Taghizade, Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida, Environ. Technol., 32 (2011) 1835–1841.
  56. S. Kar, T. Swaminathan, A. Baradarajan, Biodegradation of phenol and cresol isomer mixtures by Arthrobacter, World J. Microbiol. Biotechnol., 13 (1997) 659–663.
  57. K.L. Ho, B. Lin, Y.Y. Chen, Biodegradation of phenol using Corynebacterium sp. DJ1 aerobic granules, Bioresour. Technol., 100 (2009) 5051–5055.
  58. A.M. Ahamad, Phenol degradation by Pseudomonas aeruginosa, Environ. Sci. Health, 30 (1995) 99–103.
  59. T.A.A. Moussa, M.S. Mohamed, N. Samak, Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN, Braz. J. Chem. Eng., 31 (2014) 867–880.
  60. F.A. Bezza, M.N. Evans, K. Chirwa, Biosurfactant enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil, Chemosphere, 144 (2016) 635–644.
  61. L.K.S. Chauhan, P.N. Saxena, V. Sundararaman, S.K. Gupta, Diuron induced cytological and ultrastructural alterations in the root meristem cells of Allium cepa, Pestic. Biochem. Physiol., 62 (1998) 152–163.
  62. R. Rucinska, R. Sobkowiak, E.A. Gwozdz, Genotoxicity of lead in lupin root cells as evaluated by the comet assay, Cell. Mol. Biol. Lett., 9 (2004) 519–528.
  63. Z. Moussa, M. Chebl, D. Patra, Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule, Colloids Surf. B Biointerfaces, 149 (2017) 30–37.