References
- D.L. Swackhamer, J.L. Meyer, Efficacy of Ballast Water
Treatment Systems: A Report by the EPA Science Advisory
Board, United States Environmental Protection Agency,
Washington DC, 2011.
- C.S.W. Chan, S. Lau, A.S. Husaini, A. Zulkharnain, K. Apun,
L.M. Bilung, M. Vincent, Identification of methane-producing
bacteria from palm oil mill sludge (POMS) with solid cud from
ruminant stomach, J. Biochem. Microbiol. Biotechnol., 2 (2014)
23–26.
- M.-L. Chong, R.A. Rahim, Y. Shirai, M.A. Hassan, Biohydrogen
production by Clostridium butyricum EB6 from palm oil mill
effluent, Int. J. Hydrog. Energy, 34 (2009) 764–771.
- A.M. Roantree, D. Kwok, Hong Kong Cleans Up 93 Tonnes of
Palm Oil; Beaches Smothered by Spill, Reuters, 2017. https://
www.reuters.com/article/us-hongkong-pollution/hong-kong
cleans-up-93-tonnes-of-palm-oil-beaches-smothered-by-spillid
USKBN1AP06Y, Accessed 12th Dec 2018.
- B. Cudmore, A. Mak, Are toxic blobs of palm oil poisoning our
pets? Slate, 2017.
- V. Tornero, G. Hanke, Chemical contaminants entering the
marine environment from sea-based sources: a review with a
focus on European seas, Mar. Pollut. Bull., 112 (2016) 17–38.
- T. Höfer, L. Mez, United Nations’ regulatory policy under
changing advocacy coalitions: the case of the maritime transport
of renewable primary products, J. Transdiscip. Environ. Stud., 7
(2008) 1–17.
- P. Ittrat, T. Chacho, J. Pholprayoon, N. Suttiwarayanon,
J. Charoenpanich, Application of agriculture waste as a support
for lipase immobilization, Biocatal. Agric. Biotechnol., 3 (2014)
77–82.
- S. Ganti, J.J. Wille, A. Bakshi, On site bioremediation of oily
ballast waters of ships and tankers, in 2nd International Ballast
Water Treatment R&D Symposium, held at IMO Headquarters,
London from 21–23 July 2003, 2003.
- M.A. Abdullah, M. Afzaal, Z. Ismail, A. Ahmad, M.S. Nazir,
A.H. Bhat, Comparative study on structural modification
of Ceiba pentandra for oil sorption and palm oil mill effluent
treatment, Desal. Wat. Treat., 54 (2015) 3044–3053.
- L. Qiu, Y. Cheng, C. Yang, G. Zeng, Z. Long, S. Wei, K. Zhao,
L. Luo, Oxidative desulfurization of dibenzothiophene using
a catalyst of molybdenum supported on modified medicinal
stone, RSC Adv., 6 (2016) 17036–17045.
- C. Yang, K. Zhao, Y. Cheng, G. Zeng, M. Zhang, J. Shao, L. Lu,
Catalytic oxidative desulfurization of BT and DBT from n-octane
using cyclohexanone peroxide and catalyst of molybdenum
supported on 4A molecular sieve, Sep. Purif. Technol., 163
(2016) 153–161.
- S. Wei, H. He, Y. Cheng, C. Yang, G. Zeng, L. Kang, H. Qian, C. Zhu,
Preparation, characterization, and catalytic performances
of cobalt catalysts supported on KIT-6 silicas in oxidative
desulfurization of dibenzothiophene, Fuel, 200 (2017) 11–21.
- N.F. Aziz, M.I.E. Halmi, W.L.W. Johari, Statistical optimization
of hexavalent molybdenum reduction by Serratia sp. strain
MIE2 using Central Composite Design (CCD), J. Biochem.
Microbiol. Biotechnol., 5 (2017) 8–11.
- J. LaRoche, B. Rost, A. Engel, Bioassays, batch culture
and chemostat experimentation, Approaches and Tools
to Manipulate the Carbonate Chemistry, Guide for Best
Practices in Ocean Acidification Research and Data Reporting,
U. Riebesell, V.J. Fabry, L. Hanson, J.P. Gattuso, Eds., European
Commission, Belgium, 2010, pp. 81–94.
- R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for
Biochemical Research, Oxford University Press, London, 1969.
- C. Botinestean, N.G. Hadaruga, D.I. Hadaruga, I. Jianu, Fatty
acids composition by gas chromatography-mass spectrometry
(GC-MS) and most important physical-chemicals parameters
of tomato seed oil, J. Agroaliment. Process. Technol., 18 (2012)
89–94.
- E. USEPA, Method 1664 revision A: n-hexane extractable
material (HEM; oil and grease) and silica gel treated N-hexane
extractable material (SGT-HEM; non-polar material) by
extraction and gravimetry, U.S. Environmental Protection
Agency, Washington DC, 1999.
- K.I. Karamba, S.A. Ahmad, A. Zulkharnain, M.A. Syed,
K.A. Khalil, N.A. Shamaan, N.A. Dahalan, M.Y. Shukor,
Optimisation of biodegradation conditions for cyanide removal
by Serratia marcescens strain AQ07 using one-factor-at-a-time
technique and response surface methodology, Rend. Lincei, 27
(2016) 533–545.
- H.K. Shon, D. Tian, D.-Y. Kwon, C.-S. Jin, T.-J. Lee, W.-J. Chung,
Degradation of fat, oil, and grease (FOGs) by lipase-producing
bacterium Pseudomonas sp. strain D2D3, J. Microbiol.
Biotechnol., 12 (2002) 583–591.
- K. Yamazaki, M. Fujikawa, T. Hamazaki, S. Yano, T. Shono,
Comparison of the conversion rates of α-linolenic acid (18: 3
(n- 3)) and stearidonic acid (18: 4 (n- 3)) to longer polyunsaturated
fatty acids in rats, Biochim. Biophys. Acta, Lipids Lipid Metab.,
1123 (1992) 18–26.
- M.H. Yakasai, M.F.A. Rahman, M.B.H.A. Rahim, M.E. Khayat,
N.A. Shamaan, M.Y. Shukor, Isolation and characterization
of a metal-reducing Pseudomonas sp. strain 135 with amidedegrading
capability, Bioremediat. Sci. Technol. Res., 5 (2017)
32–38.
- N.K.S. Islahuddin, M.I.E. Halmi, M. Manogaran, M.Y. Shukor,
Isolation and culture medium optimisation using one-factor-attime
and response surface methodology on the biodegradation
of the azo-dye amaranth, Bioremediat. Sci. Technol. Res., 5
(2017) 25–31.