References
- J. Shao, S. Qin, W. Li, Y. He, Simultaneous recovery of nickel
and cobalt from aqueous solutions using complexationultrafiltration
process, Sep. Sci. Technol., 48 (2013) 2735–2740.
- C. Onaç, A. Kaya, H. Alpoğuz, M. Yola, S. Eriskin, N. Atar,
İ. Şener, Recovery of Cr (VI) by using a novel calix [4]
arene
polymeric membrane with modified graphene quantum dots,
Int. J. Environ. Sci. Technol., 14 (2017) 2423–2434.
- G.Z. Kyzas, E.A. Deliyanni, K.A. Matis, Activated carbons
produced by pyrolysis of waste potato peels: cobalt ions
removal by adsorption, Colloids Surf. A., 490 (2016) 74–83.
- P. Ilaiyaraja, A.K. Singha Deb, D. Ponraju, B. Venkatraman,
Removal of cobalt from aqueous solution using xanthate
functionalized dendrimer, Desal. Water Treat., 52 (2014)
438–445.
- X. Li, Z. Lei, J. Qu, Z. Li, Q. Zhang, Separation of copper from
cobalt in sulphate solutions by using CaCO3, Sep. Sci. Technol.,
51 (2016) 2772–2779.
- T. Anirudhan, J. Deepa, J. Christa, Nanocellulose/nanobentonite
composite anchored with multi-carboxyl functional groups as
an adsorbent for the effective removal of cobalt (II) from nuclear
industry wastewater samples, J.Colloid Interface Sci., 467 (2016)
307–320.
- A. Bhatnagar, A. Minocha, M. Sillanpää, Adsorptive removal
of cobalt from aqueous solution by utilizing lemon peel as
biosorbent, Biochem. Eng. J., 48 (2010) 181–186.
- F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun,
Z. Jin, J. Wang, X.-J. Huang, Removal of cobalt ions from aqueous
solution by an amination graphene oxide nanocomposite,
J. Hazard. Mater., 270 (2014) 1–10.
- A. Wołowicz, Z. Hubicki, Comparison of ion-exchange resins
for efficient cobalt (II) removal from acidic streams, Chem. Eng.
Commun., 205 (2018) 1207–1225.
- O. Kazak, A. Tor, I. Akin, G. Arslan, Preparation of new
polysulfone capsules containing Cyanex 272 and their properties
for Co (II) removal from aqueous solution, J. Environ. Chem.
Eng., 3 (2015) 1654–1661.
- S. Siva, S. Sudharsan, R.S. Kannan, Selective Co (II) removal
from aqueous media by immobilizing silver nanoparticles
within a polymer-matrix through a formaldehyde cross linking
agent, RSC Adv., 5 (2015) 23340–23349.
- M.S. Mauter, I. Zucker, F. Perreault, J.R. Werber, J.-H. Kim,
M. Elimelech, The role of nanotechnology in tackling global
water challenges, Nat. Sustainability, 1 (2018) 166.
- N. Samadi, R. Ansari, B. Khodaverdiloo, Synthesized some
copolymer derivative of poly (styrene–alternative-maleic
anhydride) (SMA) for removal cobalt(II) ions from aqueous
solutions and determination residual cobalt(II) ions by using
spectrophotometric method, Chem. Solid Mater., 2 (2017) 1–16.
- A.Y. Gulsin Arslan, A. Tor, M. Ersoz, Preparation of polymer
inclusion membrane with sodium diethyldithiocarbamate as a
carrier reagent for selective transport of zinc ions, Desal. Water
Treat., 75 (2017) 348–356.
- M. Baczynska, M. Rzelewska, M. Regel-Rosocka, M. Wisniewski,
Transport of iron ions from chloride solutions using cellulose
triacetate matrix inclusion membranes with an ionic liquid
carrier, Chem. Pap., 70 (2016) 172–179.
- M. Baczyńska, M. Regel-Rosocka, M.T. Coll, A. Fortuny,
A.M. Sastre, M. Wiśniewski, Transport of Zn(II), Fe(II), Fe(III)
across polymer inclusion membranes (PIM) and flat sheet
supported liquid membranes (SLM) containing phosphonium
ionic liquids as metal ion carriers, Sep. Sci. Technol., 51 (2016)
2639–2648.
- J.S. Gardner, J.O. Walker, J.D. Lamb, Permeability and durability
effects of cellulose polymer variation in polymer inclusion
membranes, J. Membr. Sci., 229 (2004) 87–93.
- G. León, M.A. Guzmán, Facilitated transport of cobalt through
bulk liquid membranes containing D2EHPA as carrier. Kinetic
study of the influence of some operational variables, Desal.
Water Treat., 13 (2010) 267–273.
- N. Hajarabeevi, I.M. Bilal, D. Easwaramoorthy, K. Palanivelu,
Facilitated transport of cationic dyes through a supported
liquid membrane with D2EHPA as carrier, Desalination, 245
(2009) 19–27.
- B. Mahanty, P.K. Mohapatra, D. Raut, D. Das, P. Behere, M. Afzal,
Polymer inclusion membranes containing N,N,N′,N′-tetra
(2-ethylhexyl) diglycolamide: uptake isotherm and actinide ion
transport studies, Ind. Eng. Chem. Res., 54 (2015) 3237–3246.
- O. Kebiche-Senhadji, S. Bey, G. Clarizia, L. Mansouri,
M. Benamor, Gas permeation behavior of CTA polymer
inclusion membrane (PIM) containing an acidic carrier for
metal recovery (DEHPA), Sep. Purif. Technol., 80 (2011) 38–44.
- E.R. de San Miguel, J.C. Aguilar, J. de Gyves, Structural effects
on metal ion migration across polymer inclusion membranes:
dependence of transport profiles on nature of active plasticizer,
J. Membr. Sci., 307 (2008) 105–116.
- C.A. Kozlowski, W. Walkowiak, Transport of Cr(VI), Zn(II), and
Cd(II) ions across polymer inclusion membranes with tridecyl
(pyridine) oxide and tri-n-octylamine, Sep. Sci.Technol., 39
(2004) 3127–3141.
- E. Radzyminska-Lenarcik, M. Ulewicz, Selective transport
of Cu(II) across a polymer inclusion membrane with
1-alkylimidazole from nitrate solutions, Sep. Sci. Technol., 47
(2012) 1113–1118.
- A. Kaya, C. Onac, H.K. Alpoguz, A novel electro-driven
membrane for removal of chromium ions using polymer
inclusion membrane under constant DC electric current,
J. Hazard. Mater., 317 (2016) 1–7.
- H. Ferraz, L. Duarte, M. Di Luccio, T. Alves, A. Habert, C. Borges,
Recent achievements in facilitated transport membranes for
separation processes, Braz. J. Chem. Eng., 24 (2007) 101–118.
- M. Kolodziejska, J. Kozlowska, C. Kozlowski, Separation of
silver(I) and copper(II) by polymer inclusion membranes with
aza [18] crown-6 derivatives as ion carriers, Desal. Water Treat.,
64 (2017) 432–436.
- M.I.G. Almeida, A.M. Silva, R.W. Cattrall, S.D. Kolev, A study of
the ammonium ion extraction properties of polymer inclusion
membranes containing commercial dinonylnaphthalene
sulfonic acid, J. Membr. Sci., 478 (2015) 155–162.
- L.D. Nghiem, P. Mornane, I.D. Potter, J.M. Perera, R.W. Cattrall,
S.D. Kolev, Extraction and transport of metal ions and small
organic compounds using polymer inclusion membranes
(PIMs), J. Membr. Sci., 281 (2006) 7–41.
- M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak,
M. Regel-Rosocka, Characterization of polymer inclusion
membranes (PIMs) containing phosphonium ionic liquids as
Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082.
- J.S. Gardner, Q.P. Peterson, J.O. Walker, B.D. Jensen, B. Adhikary,
R.G. Harrison, J.D. Lamb, Anion transport through polymer
inclusion membranes facilitated by transition metal containing
carriers, J. Membr. Sci., 277 (2006) 165–176.
- C. Fontàs, R. Tayeb, M. Dhahbi, E. Gaudichet, F. Thominette,
P. Roy, K. Steenkeste, M.-P. Fontaine-Aupart, S. Tingry,
E. Tronel-Peyroz, Polymer inclusion membranes: the concept
of fixed sites membrane revised, J. Membr. Sci., 290 (2007)
62–72.
- Y. Baba, F. Kubota, M. Goto, R.W. Cattrall, S.D. Kolev,
Separation of cobalt(II) from manganese(II) using a polymer
inclusion membrane with N‐[N, N-di (2‐ethylhexyl)
aminocarbonylmethyl] glycine (D2EHAG) as the extractant/
carrier, J. Chem. Technol. Biotechnol., 91 (2015) 1320–1326.
- R. Abedini, S.M. Mousavi, R. Aminzadeh, A novel cellulose
acetate (CA) membrane using TiO2 nanoparticles: preparation,
characterization and permeation study, Desalination, 277 (2011)
40–45.
- M. Homayoonfal, M.R. Mehrnia, Y.M. Mojtahedi, A.F. Ismail,
Effect of metal and metal oxide nanoparticle impregnation route
on structure and liquid filtration performance of polymeric
nanocomposite membranes: a comprehensive review, Desal.
Water Treat., 51 (2013) 3295–3316.
- M. Amin, A. Alazba, U. Manzoor, A review of removal of
pollutants from water/wastewater using different types of
nanomaterials, Adv. Mater. Sci. Eng., 2014 (2016) 1–24.
- N. Ghaemi, A new approach to copper ion removal from water
by polymeric nanocomposite membrane embedded with
γ-alumina nanoparticles, Appl. Surf. Sci., 364 (2016) 221–228.
- J. Wang, B. Chen, Adsorption and coadsorption of organic
pollutants and a heavy metal by graphene oxide and reduced
graphene materials, Chem. Eng. J., 281 (2015) 379–388.
- D.W. Green, R.H. Perry, Perry’s Chemical Engineers’ Handbook,
McGraw-Hill, New York, United States, 1973.
- B. Pospiech, Synergistic solvent extraction and transport of
Zn(II) and Cu(II) across polymer inclusion membrane with a
mixture of TOPO and Aliquat 336, Sep. Sci.Technol., 49 (2014)
1706–1712.
- X. Meng, C. Wang, P. Zhou, X. Xin, L. Wang, Transport
and selectivity of indium through polymer inclusion membrane
in hydrochloric acid medium, Front. Environ. Sci. Eng., 11
(2017) 9.
- B. Pospiech, Selective recovery of cobalt(II) towards lithium(I)
from chloride media by transport across polymer inclusion
membrane with triisooctylamine, Pol. J. Chem. Technol., 16
(2014) 15–20.
- C.A. Kozlowski, W. Walkowiak, Removal of chromium(VI)
from aqueous solutions by polymer inclusion membranes,
Water Res., 36 (2002) 4870–4876.
- C. Kozlowski, W. Walkowiak, W. Pellowski, J. Koziol,
Competitive transport of toxic metal ions by polymer inclusion
membranes, J. Radioanal. Nucl. Chem., 253 (2002) 389–394.
- B. Pośpiech, Separation of silver (I) and copper(II) from aqueous
solutions by transport through polymer inclusion membranes
with Cyanex 471X, Sep. Sci. Technol., 47 (2012) 1413–1419.
- M. Baczyńska, Ż. Słomka, M. Rzelewska, M. Waszak,
M. Nowicki, M. Regel‐Rosocka, Characterization of polymer
inclusion membranes (PIM) containing phosphonium ionic
liquids and their application for separation of Zn(II) from
Fe(III), J. Chem. Technol. Biotechnol., 93 (2018) 1767–1777.
- Y. Yıldız, A. Manzak, O. Tutkun, Selective extraction of cobalt
ions through polymer inclusion membrane containing Aliquat
336 as a carrier, Desal. Water Treat., 57 (2014) 1–8.
- A. Shaaban, M. Azab, A. Mahmoud, A. Khalil, A. Metwally,
Selective transport of Cu(II), Co(II), Cd(II) and Ni(II) ions through
polymer inclusion membranes (PIMs) based on some amide
derivatives of 4-amino-1, 5-dimethyl-2-phenylpyrazolidin-3-
one, Desal. Water Treat., 70 (2017) 190–200.
- A. Yilmaz, G. Arslan, A. Tor, I. Akin, Selectively facilitated
transport of Zn(II) through a novel polymer inclusion membrane
containing Cyanex 272 as a carrier reagent, Desalination, 277
(2011) 301–307.
- C. Onac, H.K. Alpoguz, E. Akceylan, M. Yilmaz, Facilitated
transport of Cr(VI) through polymer inclusion membrane
system containing calix [4] arene derivative as carrier agent,
J. Macromol. Sci. Part A Pure Appl., 50 (2013) 1013–1021.
- A. Kaya, C. Onac, H.K. Alpoguz, A. Yilmaz, N. Atar, Removal of
Cr(VI) through calixarene based polymer inclusion membrane
from chrome plating bath water, Chem. Eng. J., 283 (2016)
141–149.
- O. Kebiche-Senhadji, S. Tingry, P. Seta, M. Benamor, Selective
extraction of Cr(VI) over metallic species by polymer inclusion
membrane (PIM) using anion (Aliquat 336) as carrier,
Desalination, 258 (2010) 59–65.
- M.I.G. Almeida, R.W. Cattrall, S.D. Kolev, Recent trends in
extraction and transport of metal ions using polymer inclusion
membranes (PIMs), J. Membr. Sci., 415 (2012) 9–23.
- S.D. Kolev, A.M. St John, R.W. Cattrall, Mathematical modeling
of the extraction of uranium(VI) into a polymer inclusion
membrane composed of PVC and di-(2-ethylhexyl) phosphoric
acid, J. Membr. Sci., 425 (2013) 169–175.
- D. Raut, P. Kandwal, G. Rebello, P. Mohapatra, Evaluation
of polymer inclusion membranes containing calix[4]-bis-2,
3-naptho-crown-6 for Cs recovery from acidic feeds: transport
behavior, morphology and modeling studies, J. Membr. Sci.,
407 (2012) 17–26.
- K. Witt, E. Radzyminska-Lenarcik, W. Urbaniak, Selective
transport of zinc ions through novel polymer inclusion
membranes (PIMS) containing β-diketone derivatives as carrier
reagents, Sep. Sci.Technol., 51 (2016) 2620–2627.
- E. Radzyminska-Lenarcik, M. Ulewicz, Application of
polymer inclusion and membranes supported with 1-alkyl-2-
methylimidazoles for separation of selected transition metal
ions, Desal. Water Treat., 64 (2017) 425–431.
- C.A. Kozlowski, W. Walkowiak, Competetive transport of
cobalt-60, strontium-90, and cesium-137 radioisotopes across
polymer inclusion membranes with DNNS, J. Membr. Sci., 297
(2007) 181–189.
- A. Nowik-Zajac, C. Kozlowski, A. Trochimczuk, Selective
transport of Ag+ and Cu2+ across plasticized membranes with
calix [4] pyrrole [2] thiophene, Desalination, 294 (2012) 25–29.
- M. Tortora, G. Gorrasi, V. Vittoria, G. Galli, S. Ritrovati,
E. Chiellini, Structural characterization and transport properties
of organically modified montmorillonite/polyurethane
nanocomposites, Polymer, 43 (2002) 6147–6157.
- K. Masenelli‐Varlot, E. Reynaud, G. Vigier, J. Varlet, Mechanical
properties of clay‐reinforced polyamide, J. Polym. Sci., Part B:
Polym. Phys., 40 (2002) 272–283.
- R. Zoppi, S. Das Neves, S. Nunes, Hybrid films of poly (ethylene
oxide-b-amide-6) containing sol–gel silicon or titanium oxide
as inorganic fillers: effect of morphology and mechanical
properties on gas permeability, Polym., 41 (2000) 5461–5470.
- P. Uribe-Arocha, C. Mehler, J.E. Puskas, V. Altstädt, Effect of
sample thickness on the mechanical properties of injectionmolded
polyamide-6 and polyamide-6 clay nanocomposites,
Polymer, 44 (2003) 2441–2446.
- A. Kausar, Investigation on self-assembled blend membranes
of polyethylene-block-poly (ethylene glycol)-blockpolcaprolactone
and poly (styrene-block-methyl methacrylate)
with polymer/gold nanocomposite particles, Polym. Plast.
Technol. Eng., 54 (2015) 1794–1802.
- L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric
membranes incorporated with metal/metal oxide nanoparticles:
a comprehensive review, Desalination, 308 (2013) 15–33.