References
- F. Cuomo, F. Venditti, A. Ceglie, A. De Leonardis, V. Macciola,
F. Lopez, Cleaning of olive mill wastewaters by visible light
activated carbon doped titanium dioxide, RSC Adv., 5 (2015)
85586–85591.
- F. Venditti, F. Cuomo, A. Ceglie, P. Avino, M.V. Russo, F. Lopez,
Visible light caffeic acid degradation by carbon-doped titanium
dioxide, Langmuir, 31 (2015) 3627–3634.
- A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi,
Phenol removal from oil refinery wastewater using anaerobic
stabilization pond modeling and process optimization using
response surface methodology (RSM), Desal. Wat. Treat., 87
(2017) 199–208.
- V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío,
M.C. Hidalgo, Enhanced photocatalytic removal of phenol from
aqueous solutions using ZnO modified with Ag, Appl. Catal., B,
225 (2018) 197–206.
- Y.K. Ooi, L. Yuliati, S.L. Lee, Phenol photocatalytic degradation
over mesoporous TUD-1-supported chromium oxide-doped
titania photocatalyst, Chin. J. Catal., 37 (2016) 1871–1881.
- R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study
of the efficiency of bio-filter and activated sludge (BF/AS)
combined process in phenol removal from aqueous solution:
determination of removing model according to response surface
methodology (RSM), Desal. Wat. Treat., 77 (2017) 256–263.
- L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee,
K.E. Taylor, N. Biswas, A short review of techniques for phenol
removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
- Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, Y. Zhu,
Photoelectrocatalytic degradation of phenol-containing
wastewater by TiO2/gC3N4 hybrid heterostructure thin film,
Appl. Catal., B, 201 (2017) 600–606.
- F. Cuomo, F. Venditti, G. Cinelli, A. Ceglie, F. Lopez, Olive mill
wastewater (OMW) phenol compounds degradation by means
of a visible light activated titanium dioxide-based photocatalyst,
Z. Physikalische Chemie., 230 (2016) 1269–1280.
- H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He,
An overview on limitations of TiO2-based particles for
photocatalytic degradation of organic pollutants and the
corresponding countermeasures, Water Res., 79 (2015) 128–146.
- M. Mohammadi, S. Sabbaghi, H. Sadeghi, M.M. Zerafat, R.
Pooladi, Preparation and characterization of TiO2/ZnO/CuO
nanocomposite and application for phenol removal from
wastewaters, Desal. Wat. Treat., 57 (2016) 799–809.
- S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang,
H. Wang, TiO2 based photocatalytic membranes: a review,
J. Membr. Sci., 472 (2014) 167–184.
- S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib,
Heterogeneous photocatalytic degradation of phenols in
wastewater: a review on current status and developments,
Desalination, 261 (2010) 3–18.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol. C, 13 (2012) 169–189.
- M.V Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo,
V. Murugesan, Fine route for an efficient removal of 2,
4-dichlorophenoxyacetic acid (2, 4-D) by zeolite-supported
TiO2, Chemosphere, 63 (2006) 1014–1021.
- H.B. Yener, M. Yılmaz, Ö. Deliismail, S.F. Özkan, Ş.Ş. Helvacı,
Clinoptilolite supported rutile TiO2 composites: synthesis,
characterization, and photocatalytic activity on the degradation
of terephthalic acid, Sep. Purif. Technol., 173 (2017) 17–26.
- T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of
hazardous dye methyl orange by use of a composite catalyst
consisting of multi-walled carbon nanotubes and titanium
dioxide, J. Colloid Interface Sci., 371 (2012) 101–106.
- S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst
with high activity and easy separation prepared by a
hydrothermal method, J. Hazard. Mater., 143 (2007) 257–263.
- K. Mogyorosi, I. Dekany, J.H. Fendler, Preparation and
characterization of clay mineral intercalated titanium dioxide
nanoparticles, Langmuir, 19 (2003) 2938–2946.
- M.G. Alalm, A. Tawfik, S. Ookawara, Enhancement of
photocatalytic activity of TiO2 by immobilization on activated
carbon for degradation of pharmaceuticals, JECE, 4 (2016)
1929–1937.
- A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of
titanium dioxide onto supporting materials in heterogeneous
photocatalysis: a review, Appl. Catal., A, 389 (2010) 1–8.
- B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water,
Appl. Catal., B, 41 (2003) 427–433.
- M. Li, B. Lu, Q.-F. Ke, Y.-J. Guo, Y.-P. Guo, Synergetic effect
between adsorption and photodegradation on nanostructured
TiO2/activated carbon fiber felt porous composites for toluene
removal, J. Hazard. Mater., 333 (2017) 88–98.
- I.-S. Park, S.Y. Choi, J.S. Ha, High-performance titanium dioxide
photocatalyst on ordered mesoporous carbon support, Chem.
Phys. Lett., 456 (2008) 198–201.
- G. Liu, S. Zheng, D. Yin, Z. Xu, J. Fan, F. Jiang, Adsorption of
aqueous alkylphenol ethoxylate surfactants by mesoporous
carbon CMK-3, J. Colloid. Interface Sci., 302 (2006) 47–53.
- R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous
carbons, Adv. Mater., 13 (2001) 677–681.
- K. Ghani, N. Kiomarsipour, H. Jaberi, Evaluation of optical
properties of CMK-1 and CMK-3 mesoporous carbons and
introduction them as very interesting black pigments, Dyes
Pigm., 122 (2015) 126–133.
- H.B. An, M.J. Yu, J.M. Kim, M. Jin, J.-K. Jeon, S.H. Park,
S.-S. Kim, Y.-K. Park, Indoor formaldehyde removal over CMK-
3, Nanoscale Res. Lett., 7 (2012) 7.
- Y. Liu, Q. Li, X. Cao, Y. Wang, X. Jiang, M. Li, M. Hua, Z. Zhang,
Removal of uranium (VI) from aqueous solutions by CMK-3
and its polymer composite, Appl. Surf. Sci., 285 (2013) 258–266.
- Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad,
Removal of methylene blue by mesoporous CMK-3: kinetics,
isotherms and thermodynamics, J. Mol. Liq., 223 (2016) 763–770.
- W. Tanthapanichakoon, P. Ariyadejwanich, P. Japthong,
K. Nakagawa, S.R. Mukai, H. Tamon, Adsorption–desorption
characteristics of phenol and reactive dyes from aqueous
solution on mesoporous activated carbon prepared from waste
tires, Water Res., 39 (2005) 1347–1353.
- L. Hu, S. Dang, X. Yang, J. Dai, Synthesis of recyclable catalyst–sorbent Fe/CMK-3 for dry oxidation of phenol, Microporous
Mesoporous Mater., 147 (2012) 188–193.
- D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson,
B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses
of mesoporous silica with periodic 50 to 300 angstrom pores,
Science, 279 (1998) 548–552.
- S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu,
T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon
with hexagonally ordered mesostructure, J. ACI. 122 (2000)
10712–10713.
- A. Zolfaghari, H.R. Mortaheb, F. Meshkini, Removal of
N-methyl-2-pyrrolidone by photocatalytic degradation in a
batch reactor, Ind. Eng. Chem. Res., 50 (2011) 9569–9576.
- S. Bekkouche, M. Bouhelassa, N.H. Salah, F.Z. Meghlaoui, Study
of adsorption of phenol on titanium oxide (TiO2), Desalination,
166 (2004) 355–362.
- L. Samiee, A. Yadegari, S. Tasharrofi, A. Hosseinia,
S. Sadeghhassni, Adsorption of naphthalene by carbon
mesoporous (CMK-3) from aqueous solutions, J. Appl. Chem.
Sci. Int., 7 (2016) 168–180.
- F. Zhou, C. Yan, T. Liang, Q. Sun, H. Wang, Photocatalytic
degradation of Orange G using sepiolite-TiO2 nanocomposites:
optimization of physicochemical parameters and kinetics
studies, Chem. Eng. Sci., 183 (2018) 231–239.
- D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an
organic pollutant by zinc oxide–solar process, Arab. J. Chem., 9
(2016) S1858–S1868.
- M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the
photocatalytic degradation of azo dyes in the presence of TiO2
doped with selective transition metals, Desalination, 276 (2011)
13–27.
- M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah,
Photocatalytic degradation of 2-chlorophenol by Co-doped
TiO2 nanoparticles, Appl. Catal., B, 57 (2005) 23–30.
- C.-H. Chiou, R.-S. Juang, Photocatalytic degradation of phenol
in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard.
Mater., 149 (2007) 1–7.
- T. Jiang, L. Zhang, M. Ji, Q. Wang, Q. Zhao, X. Fu, H. Yin,
Carbon nanotubes/TiO2 nanotubes composite photocatalysts
for efficient degradation of methyl orange dye, Particuology, 11
(2013) 737–742.
- M.A. Álvarez, F. Orellana-García, M.V. López-Ramón, J. Rivera-Utrilla, M. Sánchez-Polo, Influence of operational parameters
on photocatalytic amitrole degradation using nickel organic
xerogel under UV irradiation, Arab. J. Chem., 11 (2018) 564–572.
- P.A. Mangrulkar, S.P. Kamble, M.M. Joshi, J.S. Meshram,
N.K. Labhsetwar, S.S. Rayalu, Photocatalytic degradation
of phenolics by N-doped mesoporous titania under solar
radiation, Int. J. Photoenergy, 2012 (2012) 1–10.
- F. Akbal, Photocatalytic degradation of organic dyes in the
presence of titanium dioxide under UV and solar light: effect of
operational parameters, Environ. Prog., 24 (2005) 317–322.
- S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation
of two commercial reactive dyes in aqueous phase using
nanophotocatalysts, Nanoscale Res. Lett., 4 (2009) 709.
- B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo,
V. Murugesan, Solar light induced and TiO2 assisted
degradation of textile dye reactive blue 4, Chemosphere, 46
(2002) 1173–1181.
- E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh,
Photocatalytic degradation of phenol using a new developed
TiO2/graphene/heteropoly acid nanocomposite: synthesis,
characterization and process optimization, RSC Adv., 6 (2016)
96554–96562.