References

  1. F. Cuomo, F. Venditti, A. Ceglie, A. De Leonardis, V. Macciola, F. Lopez, Cleaning of olive mill wastewaters by visible light activated carbon doped titanium dioxide, RSC Adv., 5 (2015) 85586–85591.
  2. F. Venditti, F. Cuomo, A. Ceglie, P. Avino, M.V. Russo, F. Lopez, Visible light caffeic acid degradation by carbon-doped titanium dioxide, Langmuir, 31 (2015) 3627–3634.
  3. A. Dargahi, M. Mohammadi, F. Amirian, A. Karami, A. Almasi, Phenol removal from oil refinery wastewater using anaerobic stabilization pond modeling and process optimization using response surface methodology (RSM), Desal. Wat. Treat., 87 (2017) 199–208.
  4. V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag, Appl. Catal., B, 225 (2018) 197–206.
  5. Y.K. Ooi, L. Yuliati, S.L. Lee, Phenol photocatalytic degradation over mesoporous TUD-1-supported chromium oxide-doped titania photocatalyst, Chin. J. Catal., 37 (2016) 1871–1881.
  6. R. Shokoohi, A.J. Jafari, A. Dargahi, Z. Torkshavand, Study of the efficiency of bio-filter and activated sludge (BF/AS) combined process in phenol removal from aqueous solution: determination of removing model according to response surface methodology (RSM), Desal. Wat. Treat., 77 (2017) 256–263.
  7. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
  8. Z. Wei, F. Liang, Y. Liu, W. Luo, J. Wang, W. Yao, Y. Zhu, Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/gC3N4 hybrid heterostructure thin film, Appl. Catal., B, 201 (2017) 600–606.
  9. F. Cuomo, F. Venditti, G. Cinelli, A. Ceglie, F. Lopez, Olive mill wastewater (OMW) phenol compounds degradation by means of a visible light activated titanium dioxide-based photocatalyst, Z. Physikalische Chemie., 230 (2016) 1269–1280.
  10. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Res., 79 (2015) 128–146.
  11. M. Mohammadi, S. Sabbaghi, H. Sadeghi, M.M. Zerafat, R. Pooladi, Preparation and characterization of TiO2/ZnO/CuO nanocomposite and application for phenol removal from wastewaters, Desal. Wat. Treat., 57 (2016) 799–809.
  12. S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: a review, J. Membr. Sci., 472 (2014) 167–184.
  13. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments, Desalination, 261 (2010) 3–18.
  14. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol. C, 13 (2012) 169–189.
  15. M.V Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo, V. Murugesan, Fine route for an efficient removal of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by zeolite-supported TiO2, Chemosphere, 63 (2006) 1014–1021.
  16. H.B. Yener, M. Yılmaz, Ö. Deliismail, S.F. Özkan, Ş.Ş. Helvacı, Clinoptilolite supported rutile TiO2 composites: synthesis, characterization, and photocatalytic activity on the degradation of terephthalic acid, Sep. Purif. Technol., 173 (2017) 17–26.
  17. T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci., 371 (2012) 101–106.
  18. S.X. Liu, X.Y. Chen, X. Chen, A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method, J. Hazard. Mater., 143 (2007) 257–263.
  19. K. Mogyorosi, I. Dekany, J.H. Fendler, Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles, Langmuir, 19 (2003) 2938–2946.
  20. M.G. Alalm, A. Tawfik, S. Ookawara, Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals, JECE, 4 (2016) 1929–1937.
  21. A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review, Appl. Catal., A, 389 (2010) 1–8.
  22. B. Tryba, A.W. Morawski, M. Inagaki, Application of TiO2-mounted activated carbon to the removal of phenol from water, Appl. Catal., B, 41 (2003) 427–433.
  23. M. Li, B. Lu, Q.-F. Ke, Y.-J. Guo, Y.-P. Guo, Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal, J. Hazard. Mater., 333 (2017) 88–98.
  24. I.-S. Park, S.Y. Choi, J.S. Ha, High-performance titanium dioxide photocatalyst on ordered mesoporous carbon support, Chem. Phys. Lett., 456 (2008) 198–201.
  25. G. Liu, S. Zheng, D. Yin, Z. Xu, J. Fan, F. Jiang, Adsorption of aqueous alkylphenol ethoxylate surfactants by mesoporous carbon CMK-3, J. Colloid. Interface Sci., 302 (2006) 47–53.
  26. R. Ryoo, S.H. Joo, M. Kruk, M. Jaroniec, Ordered mesoporous carbons, Adv. Mater., 13 (2001) 677–681.
  27. K. Ghani, N. Kiomarsipour, H. Jaberi, Evaluation of optical properties of CMK-1 and CMK-3 mesoporous carbons and introduction them as very interesting black pigments, Dyes Pigm., 122 (2015) 126–133.
  28. H.B. An, M.J. Yu, J.M. Kim, M. Jin, J.-K. Jeon, S.H. Park, S.-S. Kim, Y.-K. Park, Indoor formaldehyde removal over CMK- 3, Nanoscale Res. Lett., 7 (2012) 7.
  29. Y. Liu, Q. Li, X. Cao, Y. Wang, X. Jiang, M. Li, M. Hua, Z. Zhang, Removal of uranium (VI) from aqueous solutions by CMK-3 and its polymer composite, Appl. Surf. Sci., 285 (2013) 258–266.
  30. Z. Ezzeddine, I. Batonneau-Gener, Y. Pouilloux, H. Hamad, Removal of methylene blue by mesoporous CMK-3: kinetics, isotherms and thermodynamics, J. Mol. Liq., 223 (2016) 763–770.
  31. W. Tanthapanichakoon, P. Ariyadejwanich, P. Japthong, K. Nakagawa, S.R. Mukai, H. Tamon, Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires, Water Res., 39 (2005) 1347–1353.
  32. L. Hu, S. Dang, X. Yang, J. Dai, Synthesis of recyclable catalyst–sorbent Fe/CMK-3 for dry oxidation of phenol, Microporous Mesoporous Mater., 147 (2012) 188–193.
  33. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 548–552.
  34. S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. ACI. 122 (2000) 10712–10713.
  35. A. Zolfaghari, H.R. Mortaheb, F. Meshkini, Removal of N-methyl-2-pyrrolidone by photocatalytic degradation in a batch reactor, Ind. Eng. Chem. Res., 50 (2011) 9569–9576.
  36. S. Bekkouche, M. Bouhelassa, N.H. Salah, F.Z. Meghlaoui, Study of adsorption of phenol on titanium oxide (TiO2), Desalination, 166 (2004) 355–362.
  37. L. Samiee, A. Yadegari, S. Tasharrofi, A. Hosseinia, S. Sadeghhassni, Adsorption of naphthalene by carbon mesoporous (CMK-3) from aqueous solutions, J. Appl. Chem. Sci. Int., 7 (2016) 168–180.
  38. F. Zhou, C. Yan, T. Liang, Q. Sun, H. Wang, Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: optimization of physicochemical parameters and kinetics studies, Chem. Eng. Sci., 183 (2018) 231–239.
  39. D. Rajamanickam, M. Shanthi, Photocatalytic degradation of an organic pollutant by zinc oxide–solar process, Arab. J. Chem., 9 (2016) S1858–S1868.
  40. M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination, 276 (2011) 13–27.
  41. M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah, Photocatalytic degradation of 2-chlorophenol by Co-doped TiO2 nanoparticles, Appl. Catal., B, 57 (2005) 23–30.
  42. C.-H. Chiou, R.-S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles, J. Hazard. Mater., 149 (2007) 1–7.
  43. T. Jiang, L. Zhang, M. Ji, Q. Wang, Q. Zhao, X. Fu, H. Yin, Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye, Particuology, 11 (2013) 737–742.
  44. M.A. Álvarez, F. Orellana-García, M.V. López-Ramón, J. Rivera-Utrilla, M. Sánchez-Polo, Influence of operational parameters on photocatalytic amitrole degradation using nickel organic xerogel under UV irradiation, Arab. J. Chem., 11 (2018) 564–572.
  45. P.A. Mangrulkar, S.P. Kamble, M.M. Joshi, J.S. Meshram, N.K. Labhsetwar, S.S. Rayalu, Photocatalytic degradation of phenolics by N-doped mesoporous titania under solar radiation, Int. J. Photoenergy, 2012 (2012) 1–10.
  46. F. Akbal, Photocatalytic degradation of organic dyes in the presence of titanium dioxide under UV and solar light: effect of operational parameters, Environ. Prog., 24 (2005) 317–322.
  47. S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts, Nanoscale Res. Lett., 4 (2009) 709.
  48. B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4, Chemosphere, 46 (2002) 1173–1181.
  49. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, Photocatalytic degradation of phenol using a new developed TiO2/graphene/heteropoly acid nanocomposite: synthesis, characterization and process optimization, RSC Adv., 6 (2016) 96554–96562.