References

  1. J. Ganoulis, Risk Analysis of Water Pollution, Wiley–VCH, Verlag GmbH & Co. KGaA, Weinheim, 2009.
  2. United Nations Environment Programme (Unep), Global Environment Outlook 2000, Earthscan Publications Ltd, UK, 1999.
  3. E. Laws, Aquatic Pollution: An Introductory Text, 4th Ed., John Wiley & Sons, New York, 2018.
  4. P.B. Chounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, in: A. Luch, Molecular, Clinical and Environmental Toxicology, Experientia Supplementum, Heavy Metal Toxicity and the Environment, Vol. 101, Springer, Basel, 2012, pp. 133–164.
  5. W.W. Eckenfelder, Industrial Water Pollution Control, 3rd ed., McGraw-Hill Book Company, New York, 2000.
  6. I.A. Rodríguez, D.L.A. Rangel, J.F.C. González, M. de G.M. Zárate, V.M.M. Juárez, Hexavalent Chromium (VI) Removal by Penicillium sp. IA-01, N. Shiomi, Advances in Bioremediation of Wastewater and Polluted Soil, Intech, London, UK, 2015, pp. 165–191.
  7. T.L. Marsh, M.J. McInerney, Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments, Appl. Environ. Microbiol., 67 (2001) 1517–1521.
  8. B. Marek, K. Nalan, L.R. Bernabé, J. Bundschuh, Sustainable water developments, Vol. 2, Innovative materials and methods for water treatment solutions for arsenic and chromium removal, CRC Press/Balkema, Taylor & Francis Group, London, UK, 2016.
  9. H. Seng, Y.T. Wang, Biological reduction of chromium by E. coli, J. Environ. Eng., 120 (1994) 560–572.
  10. D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, C.A. Mabuni, Critical assessment of chromium in the environment, Crit. Rev. Environ. Sci. Technol., 29 (1999) 1–46.
  11. European Commission DG ENV. E3 Project ENV.E.3/ETU/ 2000/0058, Heavy Metals in Waste Final Report, February 2002.
  12. I. Ali, New Generation Adsorbents, Chem. Rev., 112 (2012) 5073–5091.
  13. T. Bora, J. Dutta, Applications of nanotechnology in wastewater treatment, J. Nanosci. Nanotechnol., 14 (2014) 613–626.
  14. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment, Water Res., 47 (2013) 3931–3946.
  15. A. Roy, J. Bhattacharya, Nanotechnology in industrial wastewater treatment, IWP Publishing, London, UK, 2015.
  16. N.N. Nassar, The Application of Nanoparticles for Wastewater Remediation, B.V.D. Bruggen Ed., Applications of Nanomaterials for Water Quality, Future Science, London, UK, 2013.
  17. D.K. Tiwari, J. Behari, P. Sen, Application of nanoparticles in waste water treatment, World Appl. Sci. J., 3 (2008) 417–433.
  18. H.S. Samanta, R. Das, C. Bhattachajee, Influence of nanoparticles for wastewater treatment: a short review, Austin Chem. Eng., 3 (2016) 1036–1041.
  19. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ., 424 (2012) 1–10.
  20. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review, J. Hazard. Mater., 211–212 (2012) 317–331.
  21. H. Lu, J. Wang, M. Stoller, T. Wang, Y. Bao, H. Hao, An overview of nanomaterials for water and wastewater treatment, Adv. Mater. Sci. Eng., Vol. 2016, Article ID 4964828, 10 pages.
  22. Y.R. Zhang, S.Q. Wang, S.L. Shen, B.X. Zhao, A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition, Chem. Eng. J., 233 (2013) 258–264.
  23. Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H. Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater, Environ. Technol., 30 (2009) 583–609.
  24. K.R. Kunduru, M. Nazarkovsky, S. Farah, R.P. Pawar, A. Basu, A.J. Domb, in: M.G. Alexandru, Water Purification Nanotechnology in the Agri-Food Industry, Academic Press, An imprint of Elsevier, Massachusetts, Cambridge, USA, 2017, pp. 33–74.
  25. L.B. Tahar, M.H. Oueslati, M.J.A. Abualreish, Synthesis of magnetite derivatives nanoparticles and their application for the removal of chromium (VI) from aqueous solutions, J. Colloid Interface Sci., 512 (2018) 115–126.
  26. J. Hu, G.H. Chen, I.M.C. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms, J. Environ. Eng.,-ASCE, 132 (2006) 709–715.
  27. W. Weilong, F. Xiaobo, Efficient removal of Cr(VI) with Fe/Mn mixed metal oxide nanocomposites synthesized by a grinding method, J. Nanomater, Vol. 2013, Article ID 514917, 8 pages.
  28. J. Hu, G. Chen, I.M.C. Lo, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  29. J. Hu, I.M.C. Lo, G. Chen, Fast Removal and Recovery of Cr(VI) using surface–modified jacobsite (MnFe2O4) nanoparticles, Langmuir, 21 (2005) 11173–11179.
  30. F. Fiévet, R. Brayner, in: R. Brayner, F. Fiévet, T. Coradin, Nanomaterials: A Danger or a Promise?, Springer, London, 2013, pp. 1–25.
  31. H. Huili, S. Nowak, L.B. Tahar, Polyol-made stoichiometric Co0.2Ni0.3Zn0.5Fe2O4 nanoparticles: synthetic optimization, structural, and microstructural studies, Int. J. Nanotechnol., 12 (2015) 630–641.
  32. M. Artus, L.B. Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.M. Grenèche, S. Ammar, F. Fiévet, Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol, J. Phys.: Condens. Matter, 23 (2011) 506001 (9pp).
  33. A. Le Bail, Monte Carlo indexing with McMaille, Powder Diffract., 19 (2004) 249–254.
  34. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 2 (1969) 65–71.
  35. J.R. Carvajal, FullProf computer program, 2009. http://www.ill.eu/sites/fullprof/ (accessed January 2010).
  36. C. Suranarayana, M.G. Norton, X-ray Diffraction: A Practical Approach, Springer US, New York, 1998.
  37. L.B. Tahar, H. Basti, F. Herbst, L.S. Smiri, J.P. Quisefit, N. Yaacoub, J.M. Grenèche, S. Ammar, Co1–xZnxFe2O4 (0 ≤ x ≤ 1) nanocrystalline solid solution prepared by the polyol method: characterization and magnetic properties, Mater. Res. Bull., 47 (2012) 2590–2598.
  38. H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Materialia, 48 (2000) 1–29
  39. G.A. Petitt, D.W. Forester, Mössbauer study of cobalt-zinc ferrites, Phys. Rev. B., 4 (1971) 3912–3923.
  40. R.D. Waldron, Infrared spectra of ferrites, Phys. Rev., 99 (1955) 1727–1735.
  41. A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, Control of the size of cobalt ferrite magnetic fluid, J. Phys. Chem. B, 103 (1999) 6876–6880.
  42. S.A. Makhlouf, F.T. Parker, A.E. Berkowitz, Magnetic hysteresis anomalies in ferritin, Phys. Rev. B, 55 (1997) 14717–14720.
  43. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloy, Philos Trans R Soc A, 240 (1948) 599–642.
  44. Q. Song, Z.J. Zhang, Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals, J. Phys. Chem. B, 110 (2006) 11205–11209.
  45. J. Smit, H.P.J. Wijn, Ferrites, Philips Technical Library, Eindhoven, Netherland, 1959.
  46. L. Néel, Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins, C.R. Acad. Sci., 228 (1949) 664–671.
  47. S. Cojocaru, Magnon gas and deviation from the Bloch law in a nanoscale Heisenberg ferromagnet, Phylos. Mag., 91 (2011) 4053–4062.
  48. A.K. Haghi, A.K. Zachariah, N. Kalarikkal, Nanomaterials: Synthesis, Characterization, and Applications, CRC Press, Boca Raton, USA, 2013.
  49. H. Huili, B. Grindi, A. Kouki, G. Viau, L.B. Tahar, Effect of sintering conditions on the structural, electrical, and magnetic properties of nanosized Co0.2Ni0.3Zn0.5Fe2O4, Ceramics Int., 41 (2015) 6212–6225.
  50. J. Pradhan, S.N. Das, R.S. Thakur, Adsorption of hexavalent chromium from aqueous solution by using activated red mud, J. Colloid Interf. Sci., 217 (1999) 137–141.
  51. V.K. Gupta, A. Rastogi, Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass, J. Hazard. Mater., 154 (2008) 347–354.
  52. J.R. Stephens, J.S. Beveridge, M.E. Williams, Analytical methods for separating and isolating magnetic nanoparticles, Phys. Chem. Chem. Phys., 14 (2012) 3280–3289.
  53. Y.S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  54. B. Beverskog, I. Puigdomenech, Revised Pourbaix diagrams for chromium at 25°C–300°C, Corrosion Sci., 39 (1997) 43–57.
  55. J. Gong, X. Wang, X. Shao, S. Yuan, C. Yang, X. Hu, Adsorption of heavy metal ions by hierarchically structured magnetite– carbonaceous spheres, Talanta, 101 (2012) 45–52.
  56. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  57. H.M.F. Freundlich, Über die adsorption in lösungen, Ind. Eng. Chem. Fundam., 57 (1906) 385–470.