References

  1. P.K. Rai, Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an eco-sustainable approach, Int. J. Phytorem., 10 (2008) 131–158.
  2. G. Drasch, M. Horvat, M. Stoeppler, Mercury, E. Merian, M. Anke, M. Ihnat, M. Stoeppler, Eds., Elements and Their Compounds in the Environment: Occurrence, Analysis and Biological Relevance, Vol. 2, Wiley-VCH, Weinheim, 2004, pp. 931–1005.
  3. M. Yeganeh, M. Afyuni, H. Khoshgoftarmanesh, L. Khodakarami, M. Amini, A.R. Soffyanian, R. Schulin, Mapping of human health risks arising from soil nickel and mercury contamination, J. Hazard. Mater., 244 (2013) 225–239.
  4. C.G. Rocha, D.A.M. Zaia, R.V. da Silva Alfaya, A.A. da Silva Alfaya, Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents, J. Hazard. Mater., 166 (2009) 383–388.
  5. U.S. Environmental Protection Agency, Treatment Technologies for Mercury in Soil, Waste, and Water, Office of Superfund Remediation and Technology Innovation, Washington DC, 2007.
  6. N. Savage, M.S. Diallo, Nanomaterials and water purification: opportunities and challenges, J. Nanopart. Res., 7 (2005) 476–486.
  7. R.P. Schwazenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems, Science, 313 (2006) 1072–1077.
  8. E.A. Elkhatib, A.M. Mahdy, M.N. ElManeah, Drinking water treatment residuals effects on nickel retention in soils: a macroscopic and thermodynamic study, J. Soils Sediments., 13 (2013) 94–105.
  9. E.A. Elkhatib, M.L. Moharem, Immobilization of copper, lead, and nickel in two arid soils amended with biosolids: effect of drinking water treatment residuals, J. Soils Sediments., 15 (2015) 1937–1946.
  10. A. Hovsepyan, J.J. Bonzongo, Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: implications for soil remediation, J. Hazard. Mater., 164 (2009) 73–80.
  11. A.G. Caporale, P. Punamiya, M. Pigna, A. Violante, D. Sarkar, Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions, J. Hazard. Mater., 260 (2013) 644–651.
  12. E.A. Elkhatib, A.M. Mahdy, K.A. Salama, Green synthesis of nanoparticles by milling residues of water treatment, Environ. Chem. Lett., 13 (2015) 333–339.
  13. E.A. Elkhatib, A.M. Mahdy, F.K. Sherif, K.A. Salama, Water treatment residual nanoparticles: a novel sorbent for enhanced phosphorus removal from aqueous medium, Curr. Nanosci., 11 (2015b) 655–668.
  14. J.A. Ippolito, K.A. Barbarick, H.A. Elliott, Drinking water treatment residuals: a review of recent uses, J. Environ. Qual., 40 (2011) 1–12.
  15. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gasses in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–3019.
  16. Y. Zhang, M. Yang, X. Dou, H. He, D. Wang, Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties, Environ. Sci. Technol., 39 (2005) 7246–7253.
  17. D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental analysis, 5th Ed., Harcourt Brace and Co., Orland, 1998.
  18. V.M. Bermudez, Effect of humidity on the interaction of dimethyl methyl phosphonate (DMMP) vapor with SiO2 and Al2O3 surfaces, studied using infrared attenuated total reflection spectroscopy, Langmuir, 26 (2010) 18144–18154.
  19. P. Tarte, Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra, Spectrochim. Acta, 23 (1967) 2127–2143.
  20. J. Zou, Y. Dai, C. Tian, K. Pan, B. Jiang, L. Wang, W. Zhou, G. Tian, X. Wang, Z. Xing, H. Fu, Structure and properties of noncrystalline nano-Al(OH)₃ reclaimed from carbonized residual wastewater treatment sludge, Environ. Sci. Technol., 46 (2012) 4560–4566.
  21. A. Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51 (1979) 844–851.
  22. C. Kim, J. Rytuba, G. Brown, EXAFS study of mercury (II) sorption on Fe-and Al-(hydr)oxide: effects of pH, J. Colloid Interface Sci., 271 (2004) 1–15.
  23. K.D. Quinones, A. Hovsepyan, A. Oppong-Anane, J.C.J. Bonzongo, Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals, J. Hazard. Mater., 307 (2016) 184–192.
  24. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in sorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis on adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc., 111 (1960) 3973–3993.
  25. M. Tanzifi, S.H. Hosseini, A.D. Kiadehi, M. Olazar, K. Karimipour, R. Rezaiemehr, I. Ali, Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: kinetic, isotherm and thermodynamic studies, J. Mol. Liq., 244 (2017) 189–200.
  26. E. Elkhatib, A. Mahdy, F. Sherif, H. Hamadeen, Evaluation of novel water treatment residual nanoparticles as a sorbent for arsenic removal, J. Nanomaterials, Vol. 2015, Article ID 912942, pp. 1–10. DOI: 10.1155/2015/912942.
  27. M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim, URSS, 12 (1940) 217–222.
  28. J. Awing, X. Feng, C.W. Anderson, Y. Xing, L. Shang, Remediation of mercury contaminated sites - a review, J. Hazard. Mater., 221–222 (2012) 1–18.
  29. E.K. Faulconer, N. Hoogesteijn von Reitzenstein, D.W. Mazyck, Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery, J. Hazard. Mater., 199–200 (2011) 9–14.
  30. N.J. Barrow, V.C. Cox, The effects of pH and chloride concentration on mercury sorption. 1. by goethite, J. Soil Sci., 43 (1992) 295–304.
  31. E.A. Elkhatib, J.L. Hern, Kinetics of phosphorus desorption from Appalachian soils, Soil Sci., 145 (1988) 11–19.
  32. K.P. Lisha, M.M. Shihabudheen, T. Pradeep, Manganese dioxide nanowhiskers: a potential adsorbent for the removal of Hg(II) from water, Chem. Eng. J., 160 (2010) 432–439.
  33. R. Saravanane, T. Sundararajan, S.S. Reddy, Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from waste water: a comparative study, Indian J. Environ. Health, 44 (2002) 78–87.
  34. A.R. Kaveeshwar, S.K. Ponnusamy, E.D. Revellame, D.D. Gang, M.E. Zappi, R. Subramaniam, Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: Adsorption kinetics, isotherm and thermodynamic studies, Process Saf. Environ., 114 (2018) 107–122.
  35. Y. Sun, D. Lv, J. Zhou, X. Zhou, Z. Lou, S.A. Baig, X. Xu, Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: a comparative study, Chemosphere, 185 (2017) 452–461.
  36. E. Elkhatib, M. Moharem, A. Mahdy, M. Mesalem, Sorption, release and forms of mercury in contaminated soils stabilized with water treatment residual nanoparticles: effect of nanoparticles on mercury release and species in soils, Land Degrad. Dev., 28 (2017) 752–761.