References
- P.K. Rai, Heavy metal pollution in aquatic ecosystems and its
phytoremediation using wetland plants: an eco-sustainable
approach, Int. J. Phytorem., 10 (2008) 131–158.
- G. Drasch, M. Horvat, M. Stoeppler, Mercury, E. Merian,
M. Anke, M. Ihnat, M. Stoeppler, Eds., Elements and Their
Compounds in the Environment: Occurrence, Analysis and
Biological Relevance, Vol. 2, Wiley-VCH, Weinheim, 2004,
pp. 931–1005.
- M. Yeganeh, M. Afyuni, H. Khoshgoftarmanesh, L. Khodakarami,
M. Amini, A.R. Soffyanian, R. Schulin, Mapping of human
health risks arising from soil nickel and mercury contamination,
J. Hazard. Mater., 244 (2013) 225–239.
- C.G. Rocha, D.A.M. Zaia, R.V. da Silva Alfaya, A.A. da Silva
Alfaya, Use of rice straw as biosorbent for removal of Cu(II),
Zn(II), Cd(II) and Hg(II) ions in industrial effluents, J. Hazard.
Mater., 166 (2009) 383–388.
- U.S. Environmental Protection Agency, Treatment Technologies
for Mercury in Soil, Waste, and Water, Office of Superfund
Remediation and Technology Innovation, Washington DC,
2007.
- N. Savage, M.S. Diallo, Nanomaterials and water purification:
opportunities and challenges, J. Nanopart. Res., 7 (2005) 476–486.
- R.P. Schwazenbach, B.I. Escher, K. Fenner, T.B. Hofstetter,
C.A. Johnson, U. von Gunten, B. Wehrli, The challenge
of micropollutants in aquatic systems, Science, 313 (2006)
1072–1077.
- E.A. Elkhatib, A.M. Mahdy, M.N. ElManeah, Drinking water
treatment residuals effects on nickel retention in soils: a
macroscopic and thermodynamic study, J. Soils Sediments., 13
(2013) 94–105.
- E.A. Elkhatib, M.L. Moharem, Immobilization of copper, lead,
and nickel in two arid soils amended with biosolids: effect of
drinking water treatment residuals, J. Soils Sediments., 15 (2015)
1937–1946.
- A. Hovsepyan, J.J. Bonzongo, Aluminum drinking water
treatment residuals (Al-WTRs) as sorbent for mercury:
implications for soil remediation, J. Hazard. Mater.,
164 (2009) 73–80.
- A.G. Caporale, P. Punamiya, M. Pigna, A. Violante, D. Sarkar,
Effect of particle size of drinking-water treatment residuals
on the sorption of arsenic in the presence of competing ions,
J. Hazard. Mater., 260 (2013) 644–651.
- E.A. Elkhatib, A.M. Mahdy, K.A. Salama, Green synthesis
of nanoparticles by milling residues of water treatment,
Environ. Chem. Lett., 13 (2015) 333–339.
- E.A. Elkhatib, A.M. Mahdy, F.K. Sherif, K.A. Salama, Water
treatment residual nanoparticles: a novel sorbent for enhanced
phosphorus removal from aqueous medium, Curr. Nanosci., 11
(2015b) 655–668.
- J.A. Ippolito, K.A. Barbarick, H.A. Elliott, Drinking water
treatment residuals: a review of recent uses, J. Environ. Qual.,
40 (2011) 1–12.
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gasses in
multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–3019.
- Y. Zhang, M. Yang, X. Dou, H. He, D. Wang, Arsenate adsorption
on an Fe-Ce bimetal oxide adsorbent: role of surface properties,
Environ. Sci. Technol., 39 (2005) 7246–7253.
- D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental
analysis, 5th Ed., Harcourt Brace and Co., Orland, 1998.
- V.M. Bermudez, Effect of humidity on the interaction of
dimethyl methyl phosphonate (DMMP) vapor with SiO2 and
Al2O3 surfaces, studied using infrared attenuated total reflection
spectroscopy, Langmuir, 26 (2010) 18144–18154.
- P. Tarte, Infra-red spectra of inorganic aluminates and
characteristic vibrational frequencies of AlO4 tetrahedra and
AlO6 octahedra, Spectrochim. Acta, 23 (1967) 2127–2143.
- J. Zou, Y. Dai, C. Tian, K. Pan, B. Jiang, L. Wang, W. Zhou,
G. Tian, X. Wang, Z. Xing, H. Fu, Structure and properties
of noncrystalline nano-Al(OH)₃ reclaimed from carbonized
residual wastewater treatment sludge, Environ. Sci. Technol.,
46 (2012) 4560–4566.
- A. Tessier, P.G.C. Campbell, M. Bisson, Sequential extraction
procedure for the speciation of particulate trace metals, Anal.
Chem., 51 (1979) 844–851.
- C. Kim, J. Rytuba, G. Brown, EXAFS study of mercury (II)
sorption on Fe-and Al-(hydr)oxide: effects of pH, J. Colloid
Interface Sci., 271 (2004) 1–15.
- K.D. Quinones, A. Hovsepyan, A. Oppong-Anane, J.C.J. Bonzongo,
Insights into the mechanisms of mercury sorption onto
aluminum based drinking water treatment residuals, J. Hazard.
Mater., 307 (2016) 184–192.
- C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies
in sorption. Part XI. A system of classification of solution
adsorption isotherms, and its use in diagnosis on adsorption
mechanisms and in measurement of specific surface areas of
solids, J. Chem. Soc., 111 (1960) 3973–3993.
- M. Tanzifi, S.H. Hosseini, A.D. Kiadehi, M. Olazar,
K. Karimipour, R. Rezaiemehr, I. Ali, Artificial neural network
optimization for methyl orange adsorption onto polyaniline
nano-adsorbent: kinetic, isotherm and thermodynamic studies,
J. Mol. Liq., 244 (2017) 189–200.
- E. Elkhatib, A. Mahdy, F. Sherif, H. Hamadeen, Evaluation of
novel water treatment residual nanoparticles as a sorbent for
arsenic removal, J. Nanomaterials, Vol. 2015, Article ID 912942,
pp. 1–10. DOI: 10.1155/2015/912942.
- M.J. Temkin, V. Pyzhev, Recent modifications to Langmuir
isotherms, Acta Physiochim, URSS, 12 (1940) 217–222.
- J. Awing, X. Feng, C.W. Anderson, Y. Xing, L. Shang,
Remediation of mercury contaminated sites - a review,
J. Hazard. Mater., 221–222 (2012) 1–18.
- E.K. Faulconer, N. Hoogesteijn von Reitzenstein, D.W. Mazyck,
Optimization of magnetic powdered activated carbon for
aqueous Hg(II) removal and magnetic recovery, J. Hazard.
Mater., 199–200 (2011) 9–14.
- N.J. Barrow, V.C. Cox, The effects of pH and chloride
concentration on mercury sorption. 1. by goethite, J. Soil Sci., 43
(1992) 295–304.
- E.A. Elkhatib, J.L. Hern, Kinetics of phosphorus desorption
from Appalachian soils, Soil Sci., 145 (1988) 11–19.
- K.P. Lisha, M.M. Shihabudheen, T. Pradeep, Manganese
dioxide nanowhiskers: a potential adsorbent for the removal of
Hg(II) from water, Chem. Eng. J., 160 (2010) 432–439.
- R. Saravanane, T. Sundararajan, S.S. Reddy, Efficiency of
chemically modified low cost adsorbents for the removal of
heavy metals from waste water: a comparative study, Indian
J. Environ. Health, 44 (2002) 78–87.
- A.R. Kaveeshwar, S.K. Ponnusamy, E.D. Revellame, D.D. Gang,
M.E. Zappi, R. Subramaniam, Pecan shell based activated
carbon for removal of iron(II) from fracking wastewater:
Adsorption kinetics, isotherm and thermodynamic studies,
Process Saf. Environ., 114 (2018) 107–122.
- Y. Sun, D. Lv, J. Zhou, X. Zhou, Z. Lou, S.A. Baig, X. Xu,
Adsorption of mercury (II) from aqueous solutions using FeS
and pyrite: a comparative study, Chemosphere, 185 (2017)
452–461.
- E. Elkhatib, M. Moharem, A. Mahdy, M. Mesalem, Sorption,
release and forms of mercury in contaminated soils stabilized
with water treatment residual nanoparticles: effect of
nanoparticles on mercury release and species in soils, Land
Degrad. Dev., 28 (2017) 752–761.