References

  1. J.E. Fergusson, The Heavy Elements: Chemistry, Environmental Impact and Health Effects, Pergamon Press, Oxford, 1990.
  2. J.O. Nriagu, A global assessment of natural sources of atmospheric trace metals, Nature, 338 (1989) 47–49.
  3. O. Gibert, J.L. Cortina, J. de Pablo, C. Ayora, Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage, Environ. Sci. Pollut. Res., 20 (2013) 7854–7862.
  4. E. Wołejko, B. Pawluśkiewicz, U. Wydro, T. Łoboda, A. Butarewicz, The effect of sewage sludge on the growth and species composition of the sward and the content of heavy metals in plants and urban soil, Ann. Warsaw Univ. Life Sci. – SGGW, Land Reclam., 46 (2014) 101–114.
  5. N. Feng, H. Ghoveisi, G. Bitton, J.-C.J. Bonzongo, Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: assessment of residual toxicity using plant and MetPLATE™ studies, Environ. Pollut., 219 (2016) 9–18.
  6. M. Lech, J. Fronczyk, M. Radziemska, A. Sieczka, K. Garbulewski, E. Koda, Z. Lechowicz, Monitoring of total dissolved solids on agricultural lands using electrical conductivity measurements, Appl. Ecol. Environ. Res., 12 (2016) 285–295.
  7. D. Adamcová, M. Radziemska, A. Ridošková, S.A. Bartoň, P. Pelcová, J. Elbl, J. Kynický, M. Brtnický, M.D. Vaverková, Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L., Chemosphere, 185 (2017) 1011–1018.
  8. E. Koda, A. Tkaczyk, M. Lech, P. Osinski, Application of electrical resistivity data sets for the evaluation of the pollution concentration level within landfill subsoil, Appl. Sci., 7 (2017) 262–275.
  9. A. Arruti, I. Fernández-Olmo, A. Irabien, Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain), J. Environ. Monit., 12 (2010) 1451–1458.
  10. J.F. Peng, Y.H. Song, P. Yuan, X.Y. Cui, G.L. Qiu, The remediation of heavy metals contaminated sediment, J. Hazard. Mater., 161 (2009) 633–640.
  11. R.N. Yong, C.N. Mulligan, M. Fukue, Sustainable Practices in Geoenvironmental Engineering, CRC-Taylor & Fancis, Boca Raton, FL, 2015.
  12. S.B. Megdal, S. Eden, E. Shamir, Water governance, stakeholder engagement, and sustainable water resources management, Water, 9 (2017) 190.
  13. Directive 20000/60/EC of the European parliament and of the council of 23 Oct. 2000 establishing a framework for community action in the field of water policy, Ojec L 327/1 of 22.12.2000.
  14. S.S. Suthersan, Remediation Engineering: Design Concepts, CRC-Lewis Publishers, Boca Raton, FL, 1997.
  15. R.M. Powell, D. Blowes, R.W. Gillham, D. Schultz, T. Sivavec, R.W. Puls, R. Landis, Permeable Reactive Barrier Technologies for Contaminant Remediation, EPA/600/R–98/125, EPA, Washington, DC, 1998.
  16. A. Gavaskar, N. Gupta, B. Sass, R. Janosy, J. Hicks, Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation, Battelle, Columbus, OH, 2000.
  17. F. Obiri-Nyarko, S. Johana Grajales-Mesa, G. Malina, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemosphere, 111 (2014) 243–259.
  18. A. Navarro, J.M. Chimenos, D. Muntaner, A.I. Fernandez, Permeable reactive barriers for removal of heavy metals: lab–scale experiments with low–grade magnesium oxide, Ground Water Monit. R., 26 (2006) 142–152.
  19. O.E.A. Salam, N.A. Reiad, M.M. ElShafei, A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents, J. Adv. Res., 2 (2011) 297–303.
  20. H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J., 9 (2013) 276–282.
  21. A. Miller, L. Figueroa, T. Wildeman, Zinc and nickel removal in simulated limestone treatment of mining influenced water, Appl. Geochem., 26 (2011) 125–132.
  22. G. Bartzas, K. Komnitsas, Solid phase studies and geochemical modelling of low-cost permeable reactive barriers, J. Hazard. Mater., 183 (2010) 301–308.
  23. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review, J. Hazard. Mater., 97 (2003) 219–243.
  24. M.Q. Jiang, Q.P. Wang, X.Y. Jin, Z.L. Chen, Removal of Pb (II) from aqueous solution using modified and unmodified kaolinite clay, J. Hazard. Mater., 170 (2009) 332–339.
  25. G. Varank, A. Demir, M.S. Bilgili, S. Top, E. Sekman, S. Yazici, H.S. Erkan, Equilibrium and kinetic studies on the removal of heavy metal ions with natural low-cost adsorbents, Environ. Prot. Eng., 40 (2014) 43–61.
  26. J. Liu, H.L. Wang, C.X. Lü, H.F. Liu, Z.X. Guo, C.L. Kang, Remove of heavy metals (Cu2+, Pb2+, Zn2+ and Cd2+) in water through modified diatomite, Chem. Res. Chin. Univ., 29 (2013) 445–448.
  27. R.R. Holmes, M.L. Hart, J.T. Kevern, Heavy metal removal capacity of individual components of permeable reactive concrete, J. Contam. Hydrol., 196 (2017) 52–61.
  28. G. Chen, L. Shi, Removal of Cd (II) and Pb (II) ions from natural water using a low-cost synthetic mineral: behavior and mechanisms, RSC Adv., 7 (2017) 43445–43454.
  29. K.S. Shabani, F.D. Ardejani, K. Badii, M.E. Olya, Preparation and characterization of novel nano-mineral for the removal of several heavy metals from aqueous solution: Batch and continuous systems, A. J. Chem., 10 (2017) S3108–S3127.
  30. J. Yin, C. Deng, Z. Yu, X. Wang, Effective removal of lead ions from aqueous solution using nano illite/smectite clay: isotherm, kinetic, and thermodynamic modeling of adsorption, Water, 10 (2018) 210. doi:10.3390/w10020210
  31. Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the sorption isotherm of basic dyes on sugarcane dust, Bioresour. Technol., 96 (2002) 1285–1291.
  32. X. Luo, H. Liu, G. Huang, Y. Li, Y. Zhao, X. Li, Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies, Environ. Sci. Pollut. Res., 23 (2016) 870–877.
  33. A. Gruszecka-Kosowska, P. Baran, M. Wdowin, W. Franus, Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions, Environ. Earth Sci., 76 (2017) 521.
  34. K. Pawluk, J. Fronczyk, K. Garbulewski, Reactivity of nano zero-valent iron (nZVI) in permeable reactive barriers (PRBs), Pol. J. Chem. Technol., 17 (2015) 7–10.
  35. T.A. Burt, Z. Li, R.S. Bowman, Evaluation of granular surfactant-modified/zeolite zero valent iron pellets as a reactive material for perchloroethylene reduction, J. Environ. Eng., 131 (2005) 934.
  36. F. Obiri-Nyarko, J. Kwiatkowska-Malina, G. Malina, T. Kasel, Geochemical modelling for predicting the long-term performance of zeolite-PRB to treat lead contaminated groundwater, J. Contam. H., 177–178 (2015) 76–84.
  37. N. Toride, F.J. Leij, M.Th. van Genuchten, The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, Version 2.1. Research Report No. 137, USDA-ARS U.S. Salinity Laboratory, Riverside, CA, 1999.
  38. Q. Liu, J. Ma, Y. Zhou, T. Wang, Synthesis of MgO-Modified mesoporous silica and its adsorption performance toward CO2, Wuhan Univ. J. Nat. Sci., 19 (2014) 111–116.
  39. K. Zhou, L. Li, X. Ma, Y. Mo, R. Chen, H. Li, H. Li, Activated carbons modified by magnesium oxide as highly efficient sorbents for acetone, RSC Adv., 8 (2018) 2922–2932.
  40. A. Zukal, M. Kubů, J. Pastva, Two-dimensional zeolites: adsorption of carbon dioxide on pristine materials and on materials modified by magnesium oxide, J. CO2 Util., 21 (2017) 9–16.
  41. K. Pawluk, J. Fronczyk, Evaluation of single and multilayered reactive zones for heavy metals removal from stormwater, Environ. Technol., 36 (2015) 1576–1583.
  42. H. Ahn, H.Y. Jo, G.Y. Kim, Y.K. Koh, Effect of NaCl on Cr (VI) reduction by granular zero valent iron (ZVI) in aqueous solutions, Mater. Trans., 53 (2012) 1324–1329.
  43. M.G. Arroyo, V. Pérez-Herranz, M.T. Montanes, J. García-Antón, J.L. Guinon, Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor, J. Hazard. Mater., 169 (2009) 1127–1133.
  44. E.V. Novotny, D. Murphy, H.G. Stefan, Increase of urban lake salinity by road deicing salt, Sci. Total Environ., 406 (2008) 131–144.
  45. M. Huber, A. Welker, B. Helmreich, Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors, and partitioning, Sci. Total Environ., 541 (2016) 895–919.
  46. C. Zhao, C.-C. Wang, J.-Q. Li, C.-Y. Wang, Y.-R. Zhu, P. Wang, N. Zhang, Chemical characteristics of chromophoric dissolved organic matter in stormwater runoff of a typical residential area, Beijing, Desal. Water Treat., 57 (2016) 19727–19740.
  47. G. Tóth, T. Hermann, M.R. Da Silva, L. Montanarella, Heavy metals in agricultural soils of the European Union with implications for food safety, Environ. Int., 88 (2016) 299–309.
  48. M. Franus, M. Wdowin, L. Bandura, W. Franus, Removal of environmental pollutions using zeolites from fly ash: a review, Fresen. Environ. Bull., 24 (2015) 854–866.
  49. T.M. Statham, K.A. Mumford, S.C. Stark, D.B. Gore, G.W. Stevens, Removal of copper and zinc from ground water by granular zero-valent iron: a mechanistic study, Sep. Sci. Technol., 50 (2015) 1748–1756.
  50. L. Chen, Y. Liu, F. Xia, F. Liu, B. Li, Influences of benzene or toluene on dechlorination of perchloroethene and trichloroethene in a simulated zero-valent iron permeable reactive barrier, Water Qual. Res. J., 53 (2018) 61–71.
  51. H. Dong, Y. Chen, G. Sheng, J. Li, J. Cao, Z. Li, Y. Li, The roles of a pillared bentonite on enhancing Se (VI) removal by ZVI and the influence of co-existing solutes in groundwater, J. Hazard. Mater., 304 (2016) 306–312.
  52. S. Bilardi, P.S. Calabrò, R. Greco, N. Moraci, Removal of heavy metals from landfill leachate using zero valent iron and granular activated carbon, Environ. Technol., (2018) 1–13, https://doi.org/ 10.1080/09593330.2018.1503725.
  53. U. Santisukkasaem, D.B. Das, A non-dimensional analysis of permeability loss in zero-valent iron permeable reactive barrier (PRB), Transport Porous Med., (2018) 1–21, https://doi. org/10.1007/s11242-018-1096-0.
  54. K.E. Roehl, T. Meggyes, F.G. Simon, D.I. Stewart, Long-Term Performance of Permeable Reactive Barriers, 1st ed., Elsevier, Amsterdam, 2005.
  55. J. Vidal, C. Saez, P. Cañizares, V. Navarro, R. Salazar, M.A. Rodrigo, ZVI-reactive barriers for the remediation of soils polluted with Clopyralid: are they really worth? Chem. Eng. J., 350 (2018) 100–107.
  56. D. Phillips, T. Van Nooten, L. Bastiaens, M. Russell, K. Dickson, S. Plant, J. Ahad, T. Newton, T. Elliot, R. Kalin, Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater, Environ. Sci. Technol., 44 (2010) 3861–3869.
  57. P. Luo, E.H. Bailey, S.J. Mooney, Quantification of changes in zero valent iron morphology using X-ray computed tomography, J. Environ. Sci., 25 (2013) 2344–235.
  58. N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Environ. Manage., 91 (2010) 2336–2341.
  59. M. Barrett, P. Kearfott, J. Malina, Stormwater quality benefits of a porous friction course and its effect on pollutant removal by roadside shoulders, Water Environ. Res., 78 (2006) 2177–2185.
  60. X. Kong, E. Bi, F. Liu, G. Huang, J. Ma, Laboratory column study for evaluating a multimedia permeable reactive barrier for the remediation of ammonium contaminated groundwater, Environ Technol., 36 (2014) 1433–1440.
  61. S. Bilardi, P.S. Calabrò, S. Caré, N. Moraci, C. Noubactep, Improving the sustainability of granular iron/pumice systems for water treatment, J. Environ. Manage., 121 (2013) 133–141.
  62. Y. Ku, C.H. Chen, Kinetic study of copper deposition on iron by cementation reaction, Sep. Sci. Technol., 27 (1992) 1259–1275.
  63. J. Dries, L. Bastiaens, D. Springael, S.A. Agathos, L. Diels, Combined removal of chlorinated ethanes and heavy metals by zerovalent iron in batch and continuous flow column systems, Environ. Sci. Technol., 39 (2005) 8460–8465.
  64. G. Bartzas, K. Komnitsas, I. Paspaliaris, Laboratory evaluation of Fe0 barriers to treat acidic leachates, Miner. Eng., 19 (2006) 505–514.
  65. W. Jury, R. Horton, Soil Physics, 6th ed., John Wiley & Sons, INC., New York, 2004.
  66. J.E. Dufey, T.H. Sheta, G.R. Gobran, H. Laudelout, Dispersion of chloride, sodium, and calcium ions in soils affected by exchangeable sodium, Soil Sci. Soc. Am. J., 46 (1982) 47–50.
  67. J. Fronczyk, Artificial road runoff water treatment by a pilotscale horizontal permeable treatment zone, Ecol. Eng., 107 (2017) 198–207.