References
- J.E. Fergusson, The Heavy Elements: Chemistry, Environmental
Impact and Health Effects, Pergamon Press, Oxford, 1990.
- J.O. Nriagu, A global assessment of natural sources of
atmospheric trace metals, Nature, 338 (1989) 47–49.
- O. Gibert, J.L. Cortina, J. de Pablo, C. Ayora, Performance of
a field-scale permeable reactive barrier based on organic
substrate and zero-valent iron for in situ remediation of acid
mine drainage, Environ. Sci. Pollut. Res., 20 (2013) 7854–7862.
- E. Wołejko, B. Pawluśkiewicz, U. Wydro, T. Łoboda,
A. Butarewicz, The effect of sewage sludge on the growth and
species composition of the sward and the content of heavy metals
in plants and urban soil, Ann. Warsaw Univ. Life Sci. – SGGW,
Land Reclam., 46 (2014) 101–114.
- N. Feng, H. Ghoveisi, G. Bitton, J.-C.J. Bonzongo, Removal of
phyto-accessible copper from contaminated soils using zero
valent iron amendment and magnetic separation methods:
assessment of residual toxicity using plant and MetPLATE™
studies, Environ. Pollut., 219 (2016) 9–18.
- M. Lech, J. Fronczyk, M. Radziemska, A. Sieczka, K. Garbulewski,
E. Koda, Z. Lechowicz, Monitoring of total dissolved solids on
agricultural lands using electrical conductivity measurements,
Appl. Ecol. Environ. Res., 12 (2016) 285–295.
- D. Adamcová, M. Radziemska, A. Ridošková, S.A. Bartoň,
P. Pelcová, J. Elbl, J. Kynický, M. Brtnický, M.D. Vaverková,
Environmental assessment of the effects of a municipal
landfill on the content and distribution of heavy metals in
Tanacetum vulgare L., Chemosphere, 185 (2017) 1011–1018.
- E. Koda, A. Tkaczyk, M. Lech, P. Osinski, Application of electrical
resistivity data sets for the evaluation of the pollution concentration
level within landfill subsoil, Appl. Sci., 7 (2017) 262–275.
- A. Arruti, I. Fernández-Olmo, A. Irabien, Evaluation of the
contribution of local sources to trace metals levels in urban
PM2.5 and PM10 in the Cantabria region (Northern Spain),
J. Environ. Monit., 12 (2010) 1451–1458.
- J.F. Peng, Y.H. Song, P. Yuan, X.Y. Cui, G.L. Qiu, The remediation
of heavy metals contaminated sediment, J. Hazard. Mater., 161
(2009) 633–640.
- R.N. Yong, C.N. Mulligan, M. Fukue, Sustainable Practices in
Geoenvironmental Engineering, CRC-Taylor & Fancis, Boca
Raton, FL, 2015.
- S.B. Megdal, S. Eden, E. Shamir, Water governance, stakeholder
engagement, and sustainable water resources management,
Water, 9 (2017) 190.
- Directive 20000/60/EC of the European parliament and of the
council of 23 Oct. 2000 establishing a framework for community
action in the field of water policy, Ojec L 327/1 of 22.12.2000.
- S.S. Suthersan, Remediation Engineering: Design Concepts,
CRC-Lewis Publishers, Boca Raton, FL, 1997.
- R.M. Powell, D. Blowes, R.W. Gillham, D. Schultz, T. Sivavec,
R.W. Puls, R. Landis, Permeable Reactive Barrier Technologies
for Contaminant Remediation, EPA/600/R–98/125, EPA,
Washington, DC, 1998.
- A. Gavaskar, N. Gupta, B. Sass, R. Janosy, J. Hicks, Design
Guidance for Application of Permeable Reactive Barriers for
Groundwater Remediation, Battelle, Columbus, OH, 2000.
- F. Obiri-Nyarko, S. Johana Grajales-Mesa, G. Malina, An
overview of permeable reactive barriers for in situ sustainable
groundwater remediation, Chemosphere, 111 (2014) 243–259.
- A. Navarro, J.M. Chimenos, D. Muntaner, A.I. Fernandez,
Permeable reactive barriers for removal of heavy metals: lab–scale experiments with low–grade magnesium oxide, Ground
Water Monit. R., 26 (2006) 142–152.
- O.E.A. Salam, N.A. Reiad, M.M. ElShafei, A study of the
removal characteristics of heavy metals from wastewater by
low-cost adsorbents, J. Adv. Res., 2 (2011) 297–303.
- H.A. Hegazi, Removal of heavy metals from wastewater using
agricultural and industrial wastes as adsorbents, HBRC J., 9
(2013) 276–282.
- A. Miller, L. Figueroa, T. Wildeman, Zinc and nickel removal
in simulated limestone treatment of mining influenced water,
Appl. Geochem., 26 (2011) 125–132.
- G. Bartzas, K. Komnitsas, Solid phase studies and geochemical
modelling of low-cost permeable reactive barriers, J. Hazard.
Mater., 183 (2010) 301–308.
- S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals
uptake from contaminated water: a review, J. Hazard. Mater.,
97 (2003) 219–243.
- M.Q. Jiang, Q.P. Wang, X.Y. Jin, Z.L. Chen, Removal of Pb
(II) from aqueous solution using modified and unmodified
kaolinite clay, J. Hazard. Mater., 170 (2009) 332–339.
- G. Varank, A. Demir, M.S. Bilgili, S. Top, E. Sekman, S. Yazici,
H.S. Erkan, Equilibrium and kinetic studies on the removal of
heavy metal ions with natural low-cost adsorbents, Environ.
Prot. Eng., 40 (2014) 43–61.
- J. Liu, H.L. Wang, C.X. Lü, H.F. Liu, Z.X. Guo, C.L. Kang,
Remove of heavy metals (Cu2+, Pb2+, Zn2+ and Cd2+) in water
through modified diatomite, Chem. Res. Chin. Univ., 29 (2013)
445–448.
- R.R. Holmes, M.L. Hart, J.T. Kevern, Heavy metal removal
capacity of individual components of permeable reactive
concrete, J. Contam. Hydrol., 196 (2017) 52–61.
- G. Chen, L. Shi, Removal of Cd (II) and Pb (II) ions from
natural water using a low-cost synthetic mineral: behavior and
mechanisms, RSC Adv., 7 (2017) 43445–43454.
- K.S. Shabani, F.D. Ardejani, K. Badii, M.E. Olya, Preparation
and characterization of novel nano-mineral for the removal
of several heavy metals from aqueous solution: Batch and
continuous systems, A. J. Chem., 10 (2017) S3108–S3127.
- J. Yin, C. Deng, Z. Yu, X. Wang, Effective removal of lead ions
from aqueous solution using nano illite/smectite clay: isotherm,
kinetic, and thermodynamic modeling of adsorption, Water, 10
(2018) 210. doi:10.3390/w10020210
- Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the
sorption isotherm of basic dyes on sugarcane dust, Bioresour.
Technol., 96 (2002) 1285–1291.
- X. Luo, H. Liu, G. Huang, Y. Li, Y. Zhao, X. Li, Remediation
of arsenic-contaminated groundwater using media-injected
permeable reactive barriers with a modified montmorillonite:
sand tank studies, Environ. Sci. Pollut. Res., 23 (2016)
870–877.
- A. Gruszecka-Kosowska, P. Baran, M. Wdowin, W. Franus,
Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn
from aqueous solutions, Environ. Earth Sci., 76 (2017) 521.
- K. Pawluk, J. Fronczyk, K. Garbulewski, Reactivity of nano
zero-valent iron (nZVI) in permeable reactive barriers (PRBs),
Pol. J. Chem. Technol., 17 (2015) 7–10.
- T.A. Burt, Z. Li, R.S. Bowman, Evaluation of granular
surfactant-modified/zeolite zero valent iron pellets as a reactive
material for perchloroethylene reduction, J. Environ. Eng., 131
(2005) 934.
- F. Obiri-Nyarko, J. Kwiatkowska-Malina, G. Malina, T. Kasel,
Geochemical modelling for predicting the long-term performance
of zeolite-PRB to treat lead contaminated groundwater,
J. Contam. H., 177–178 (2015) 76–84.
- N. Toride, F.J. Leij, M.Th. van Genuchten, The CXTFIT code for
estimating transport parameters from laboratory or field tracer
experiments, Version 2.1. Research Report No. 137, USDA-ARS
U.S. Salinity Laboratory, Riverside, CA, 1999.
- Q. Liu, J. Ma, Y. Zhou, T. Wang, Synthesis of MgO-Modified
mesoporous silica and its adsorption performance toward CO2,
Wuhan Univ. J. Nat. Sci., 19 (2014) 111–116.
- K. Zhou, L. Li, X. Ma, Y. Mo, R. Chen, H. Li, H. Li, Activated
carbons modified by magnesium oxide as highly efficient
sorbents for acetone, RSC Adv., 8 (2018) 2922–2932.
- A. Zukal, M. Kubů, J. Pastva, Two-dimensional zeolites:
adsorption of carbon dioxide on pristine materials and on
materials modified by magnesium oxide, J. CO2 Util., 21 (2017)
9–16.
- K. Pawluk, J. Fronczyk, Evaluation of single and multilayered
reactive zones for heavy metals removal from stormwater,
Environ. Technol., 36 (2015) 1576–1583.
- H. Ahn, H.Y. Jo, G.Y. Kim, Y.K. Koh, Effect of NaCl on Cr
(VI) reduction by granular zero valent iron (ZVI) in aqueous
solutions, Mater. Trans., 53 (2012) 1324–1329.
- M.G. Arroyo, V. Pérez-Herranz, M.T. Montanes, J. García-Antón,
J.L. Guinon, Effect of pH and chloride concentration on the
removal of hexavalent chromium in a batch electrocoagulation
reactor, J. Hazard. Mater., 169 (2009) 1127–1133.
- E.V. Novotny, D. Murphy, H.G. Stefan, Increase of urban lake
salinity by road deicing salt, Sci. Total Environ., 406 (2008)
131–144.
- M. Huber, A. Welker, B. Helmreich, Critical review of heavy
metal pollution of traffic area runoff: occurrence, influencing
factors, and partitioning, Sci. Total Environ., 541 (2016) 895–919.
- C. Zhao, C.-C. Wang, J.-Q. Li, C.-Y. Wang, Y.-R. Zhu, P. Wang,
N. Zhang, Chemical characteristics of chromophoric dissolved
organic matter in stormwater runoff of a typical residential
area, Beijing, Desal. Water Treat., 57 (2016) 19727–19740.
- G. Tóth, T. Hermann, M.R. Da Silva, L. Montanarella, Heavy
metals in agricultural soils of the European Union with
implications for food safety, Environ. Int., 88 (2016) 299–309.
- M. Franus, M. Wdowin, L. Bandura, W. Franus, Removal of
environmental pollutions using zeolites from fly ash: a review,
Fresen. Environ. Bull., 24 (2015) 854–866.
- T.M. Statham, K.A. Mumford, S.C. Stark, D.B. Gore,
G.W. Stevens, Removal of copper and zinc from ground water
by granular zero-valent iron: a mechanistic study, Sep. Sci.
Technol., 50 (2015) 1748–1756.
- L. Chen, Y. Liu, F. Xia, F. Liu, B. Li, Influences of benzene
or toluene on dechlorination of perchloroethene and
trichloroethene in a simulated zero-valent iron permeable
reactive barrier, Water Qual. Res. J., 53 (2018) 61–71.
- H. Dong, Y. Chen, G. Sheng, J. Li, J. Cao, Z. Li, Y. Li, The roles of
a pillared bentonite on enhancing Se (VI) removal by ZVI and
the influence of co-existing solutes in groundwater, J. Hazard.
Mater., 304 (2016) 306–312.
- S. Bilardi, P.S. Calabrò, R. Greco, N. Moraci, Removal of heavy
metals from landfill leachate using zero valent iron and granular
activated carbon, Environ. Technol., (2018) 1–13, https://doi.org/
10.1080/09593330.2018.1503725.
- U. Santisukkasaem, D.B. Das, A non-dimensional analysis
of permeability loss in zero-valent iron permeable reactive
barrier (PRB), Transport Porous Med., (2018) 1–21, https://doi.
org/10.1007/s11242-018-1096-0.
- K.E. Roehl, T. Meggyes, F.G. Simon, D.I. Stewart, Long-Term
Performance of Permeable Reactive Barriers, 1st ed., Elsevier,
Amsterdam, 2005.
- J. Vidal, C. Saez, P. Cañizares, V. Navarro, R. Salazar,
M.A. Rodrigo, ZVI-reactive barriers for the remediation of soils
polluted with Clopyralid: are they really worth? Chem. Eng. J.,
350 (2018) 100–107.
- D. Phillips, T. Van Nooten, L. Bastiaens, M. Russell, K. Dickson,
S. Plant, J. Ahad, T. Newton, T. Elliot, R. Kalin, Ten year
performance evaluation of a field-scale zero-valent iron
permeable reactive barrier installed to remediate trichloroethene
contaminated groundwater, Environ. Sci. Technol., 44 (2010)
3861–3869.
- P. Luo, E.H. Bailey, S.J. Mooney, Quantification of changes
in zero valent iron morphology using X-ray computed
tomography, J. Environ. Sci., 25 (2013) 2344–235.
- N. Moraci, P.S. Calabrò, Heavy metals removal and hydraulic
performance in zero-valent iron/pumice permeable reactive
barriers, J. Environ. Manage., 91 (2010) 2336–2341.
- M. Barrett, P. Kearfott, J. Malina, Stormwater quality benefits of
a porous friction course and its effect on pollutant removal by
roadside shoulders, Water Environ. Res., 78 (2006) 2177–2185.
- X. Kong, E. Bi, F. Liu, G. Huang, J. Ma, Laboratory column
study for evaluating a multimedia permeable reactive barrier
for the remediation of ammonium contaminated groundwater,
Environ Technol., 36 (2014) 1433–1440.
- S. Bilardi, P.S. Calabrò, S. Caré, N. Moraci, C. Noubactep,
Improving the sustainability of granular iron/pumice systems
for water treatment, J. Environ. Manage., 121 (2013) 133–141.
- Y. Ku, C.H. Chen, Kinetic study of copper deposition on iron by
cementation reaction, Sep. Sci. Technol., 27 (1992) 1259–1275.
- J. Dries, L. Bastiaens, D. Springael, S.A. Agathos, L. Diels,
Combined removal of chlorinated ethanes and heavy metals by
zerovalent iron in batch and continuous flow column systems,
Environ. Sci. Technol., 39 (2005) 8460–8465.
- G. Bartzas, K. Komnitsas, I. Paspaliaris, Laboratory evaluation
of Fe0 barriers to treat acidic leachates, Miner. Eng., 19 (2006)
505–514.
- W. Jury, R. Horton, Soil Physics, 6th ed., John Wiley & Sons,
INC., New York, 2004.
- J.E. Dufey, T.H. Sheta, G.R. Gobran, H. Laudelout, Dispersion
of chloride, sodium, and calcium ions in soils affected by
exchangeable sodium, Soil Sci. Soc. Am. J., 46 (1982) 47–50.
- J. Fronczyk, Artificial road runoff water treatment by a pilotscale
horizontal permeable treatment zone, Ecol. Eng., 107
(2017) 198–207.