References

  1. Norwegian Oil and Gas industry, Environmental Work by the Oil and Gas Industry- Facts and Development Trends, Published by Norsk olje & gass, 2016.
  2. T. Austad, Water-based EOR in Carbonates and Sandstone: new Chemical Understanding of the EOR-Potential Using “Smart water”, in J. Sheng, Ed., Enhanced Oil Recovery Field Case Studies; Gulf Professional Publishing, Houston, TX., 2013, pp. 301–335.
  3. S. Strand, E.J. Høgnesen, T. Austad, Wettability alteration of carbonates - effects of potential determining ions (Ca2+ and SO42–) and temperature, Colloids Surf., A, 275 (2006) 1–10.
  4. R.R. Nair, E. Protasova, S. Strand, T. Bilstad, Membrane performance analysis for smart water production for enhanced oil recovery in carbonate and sandstone reservoirs, Energy Fuels, 32 (2018) 4988–4995.
  5. R. Nair, E. Protasova, S. Strand, T. Bilstad, Produced water Treatment with Membranes for Enhanced Oil Recovery in Carbonate and Sandstone Reservoirs, Proc. IOR 2017–19th European Symposium on Improved Oil Recovery, Stavanger, Norway, no. DOI:10.3997/2214–4609.201700296, April 24–27, 2017.
  6. J.P. Ray, R.F. Engelhardt, Produced Water-Technological/ Environmental Issues and Solutions, Published by Springer, US, 1992.
  7. M. Reed, S. Johnsen, Produced Water-2-Environmental Issues and Mitigation Technologies, Published by Springer, US, 1996.
  8. T. Puntervold, T. Austad, Injection of Seawater and Mixtures with Produced Water into North Sea Chalk Formation: Impact on Wettability, Scale Formation, and Rock Mechanics Caused by Fluid-Rock Interaction, Presented at the SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, SPE-111237-MS, 2007. Available at: https://doi.org/10.2118/111237-MS.
  9. O. Kedem, A. Katchalsky, Permeability of composite membranes: Part 1. Electric current, volume flow and flow of solutes through membranes, Trans. Faraday Soc., 59 (1963) 1918–1953.
  10. O. Kedem, A. Katchalsky, Thermodynamical analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27 (1958) 229–246.
  11. C.K. Diwara, S. Lo, M. Rumeau, M. Pontie. O. Sarr, A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water, J. Membr. Sci., 219 (2003) 103–112.
  12. Z. Murthy, S. Gupta, Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model, Desalination, 109 (1997) 39–49.
  13. M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic modeling of crossflow microfiltration using neural networks, J. Membr. Sci., 98 (1995) 263–273.
  14. H. Al-Zoubi, N. Hilal, N. Darwish, A. Mohammad, Rejection and modeling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model, Desalination, 206 (2007) 42–60.
  15. W. Bowen, M. Jones, H. Yousef, Dynamic ultrafiltration of proteins - a neural network approach, J. Membr. Sci., 146 (1998) 225–235.
  16. S. Bandini, J. Drei, D. Vezzani, The role of pH and concentration on the ion rejection in polyamide nanofiltration membranes, J. Membr. Sci., 264 (2005) 65–74.
  17. F. Donnan, Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical.chemical physiology, J. Membr. Sci., 100 (1995) 45–55.
  18. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes – use of salts, uncharged solutes, atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  19. J. Schaep, C. Vandecasteele, W. Mohammad, R. Bowen, Modeling the retention of ionic components for different nanofiltration membranes, Sep. Purif. Technol., 22–23 (2001) 169–179.
  20. K. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311–326.
  21. S.-I. Nakao, S. Kimura, Models of membrane transport phenomena and their applications for ultrafiltration data, J. Chem. Eng. Japan, 15 (1982) 200–205.
  22. X. Wang, T. Tsuru, S.-i. Nakao, S. Kimura, The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes, J. Membr. Sci., 135 (1997) 19–32.
  23. X.-L. Wang, T. Tsuru, M. Togoh, S.-I. Nakao, S. Kimura, Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Japan, 28 (1995) 186–192.
  24. R. Bowen, W. Mohammad, Diafiltration by nanofiltration: prediction and optimization, AIChE J., 44 (1998) 1799–1812.
  25. W. Bowen, J.S. Welfoot, P. Williams, Linearized transport model for nanofiltration: development and Assessment, AIChE J., 44 (2002) 760–773.
  26. M.H. Beale, M.T. Hagen, H. Demuth, Neural Networks Toolbox (TM)– Users guide, The MathWorks, Inc., 2018. Available at: https://usermanual.wiki/Document/Neural20Network20User20Guide.1353260851.pdf
  27. M. Cheryan, Ultrafiltration and Microfiltration Handbook, CRC Press, USA, 1998.
  28. M. Manttari, A. Pihlajamaki, M. Nystrom, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci., 280 (2006) 311–320.
  29. B. Tansel, Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation : hydrated radius, hydration free energy and viscous effects, Sep. Purif. Technol., 86 (2012) 119–126.