References
- L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin,
Reverse osmosis desalination: water sources, technology, and
today’s challenges, Water Res., 43 (2009) 2317–2348.
- L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water
treatment: state of the art review, Desalination, 267 (2011) 1–8.
- V.G. Gude, Energy consumption and recovery in reverse
osmosis, Desal. Wat. Treat., 36 (2011) 239–260.
- J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration
desalination and water purification membranes,
Nat. Rev. Mater., 1 (2016) 16018.
- T.I. Yun, C.J. Gabelich, M.R. Cox, A.A. Mofidi, R. Lesan,
Reducing costs for large-scale desalting plants using largediameter,
reverse osmosis membranes, Desalination, 189 (2006)
141–154.
- I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX Pressure
Exchanger device—a global survey, Desalination, 221 (2008)
136–142.
- S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis
membrane fouling and control strategies, Sci. Total Environ.,
595 (2017) 567–583.
- J.C. Schippers, A. Kostense, H.C. Folmer, Effect of Pretreatment
of River Rhine Water on Fouling of Spiral Wood Reverse
Osmosis Membranes, Vol. 2, Proceedings International
Symposium on Fresh Water from the Sea, 1980, pp. 297–306.
- J.C. Schippers, J. Verdouw, The modified fouling index, a
method of determining the fouling characteristics of water,
Desalination, 32 (1980) 137–148.
- S.F.E. Boerlage, M. Kennedy, M.P. Aniye, J.C. Schippers,
Applications of the MFI-UF to measure and predict particulate
fouling in RO systems, J. Membr. Sci., 220 (2003) 97–116.
- M.A. Javeed, K. Chinu, H.K. Shon, S. Vigneswaran, Effect of
pre-treatment on fouling propensity of feed as depicted by the
modified fouling index (MFI) and cross-flow sampler–modified
fouling index (CFS–MFI), Desalination, 238 (2009) 98–108.
- L.N. Sim, T.H. Chong, A.H. Taheri, S.T.V. Sim, L. Lai, W.B.
Krantz, A.G. Fane, A review of fouling indices and monitoring
techniques for reverse osmosis, Desalination, 434 (2018)
169–188.
- K.L. Chen, L. Song, S.L. Ong, W.J. Ng, The development of
membrane fouling in full-scale RO processes, J. Membr. Sci., 232
(2004) 63–72.
- Y.G. Lee, Y.S. Lee, D.Y. Kim, M. Park, D.R. Yang, J.H. Kim, A
fouling model for simulating long-term performance of SWRO
desalination process, J. Membr. Sci., 401–402 (2012) 282–291.
- D.Y. Kim, M.H. Lee, S. Lee, J.H. Kim, D.R. Yang, Online
estimation of fouling development for SWRO system using real
data, Desalination, 247 (2009) 200–209.
- Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim,
Artificial neural network model for optimizing operation of a
seawater reverse osmosis desalination plant, Desalination, 247
(2009) 180–189.
- G.R. Shetty, S. Chellam, Predicting membrane fouling during
municipal drinking water nanofiltration using artificial neural
networks, J. Membr. Sci., 217 (2003) 69–86.
- F. Schmitt, K.U. Do, Prediction of membrane fouling using
artificial neural networks for wastewater treated by membrane
bioreactor technologies: bottlenecks and possibilities, Environ.
Sci. Pollut. Res. Int., 24 (2017) 22885–22913.
- O.B. Shukur, M.H. Lee, Daily wind speed forecasting through
hybrid KF-ANN model based on ARIMA, Renewable Energy,
76 (2015) 637–647.
- M. Karasalo, X. Hu, An optimization approach to adaptive
Kalman filtering, Automatica, 47 (2011) 1785–1793.
- Q. Li, R. Li, K. Ji, W. Dai, Kalman Filter and Its Application,
8th International Conference on Intelligent Networks and
Intelligent Systems (ICINIS), 2015, pp. 74–77.
- Y. Park, K.H. Cho, J. Park, S.M. Cha, J.H. Kim, Development
of early-warning protocol for predicting chlorophyll-a
concentration using machine learning models in freshwater
and estuarine reservoirs, Korea, Sci. Total Environ., 502 (2015)
31–41.
- C.M. Bishop, Pattern Recognition and Machine Learning,
Springer-Verlag, New York, 2006.
- P.-F. Pai, K.-P. Lin, C.-S. Lin, P.-T. Chang, Time series forecasting
by a seasonal support vector regression model, Expert Syst.
Appl., 37 (2010) 4261–4265.
- U. Thissen, R. van Brakel, A.P. de Weijer, W.J. Melssen, L.M.C.
Buydens, Using support vector machines for time series
prediction, Chemom. Intell. Lab. Syst., 69 (2003) 35–49.
- A.J. Smola, B. Schölkopf, A tutorial on support vector regression,
Stat. Comput., 14 (2004) 199–222.