References

  1. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  2. L. Malaeb, G.M. Ayoub, Reverse osmosis technology for water treatment: state of the art review, Desalination, 267 (2011) 1–8.
  3. V.G. Gude, Energy consumption and recovery in reverse osmosis, Desal. Wat. Treat., 36 (2011) 239–260.
  4. J.R. Werber, C.O. Osuji, M. Elimelech, Materials for nextgeneration desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 16018.
  5. T.I. Yun, C.J. Gabelich, M.R. Cox, A.A. Mofidi, R. Lesan, Reducing costs for large-scale desalting plants using largediameter, reverse osmosis membranes, Desalination, 189 (2006) 141–154.
  6. I.B. Cameron, R.B. Clemente, SWRO with ERI’s PX Pressure Exchanger device—a global survey, Desalination, 221 (2008) 136–142.
  7. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ., 595 (2017) 567–583.
  8. J.C. Schippers, A. Kostense, H.C. Folmer, Effect of Pretreatment of River Rhine Water on Fouling of Spiral Wood Reverse Osmosis Membranes, Vol. 2, Proceedings International Symposium on Fresh Water from the Sea, 1980, pp. 297–306.
  9. J.C. Schippers, J. Verdouw, The modified fouling index, a method of determining the fouling characteristics of water, Desalination, 32 (1980) 137–148.
  10. S.F.E. Boerlage, M. Kennedy, M.P. Aniye, J.C. Schippers, Applications of the MFI-UF to measure and predict particulate fouling in RO systems, J. Membr. Sci., 220 (2003) 97–116.
  11. M.A. Javeed, K. Chinu, H.K. Shon, S. Vigneswaran, Effect of pre-treatment on fouling propensity of feed as depicted by the modified fouling index (MFI) and cross-flow sampler–modified fouling index (CFS–MFI), Desalination, 238 (2009) 98–108.
  12. L.N. Sim, T.H. Chong, A.H. Taheri, S.T.V. Sim, L. Lai, W.B. Krantz, A.G. Fane, A review of fouling indices and monitoring techniques for reverse osmosis, Desalination, 434 (2018) 169–188.
  13. K.L. Chen, L. Song, S.L. Ong, W.J. Ng, The development of membrane fouling in full-scale RO processes, J. Membr. Sci., 232 (2004) 63–72.
  14. Y.G. Lee, Y.S. Lee, D.Y. Kim, M. Park, D.R. Yang, J.H. Kim, A fouling model for simulating long-term performance of SWRO desalination process, J. Membr. Sci., 401–402 (2012) 282–291.
  15. D.Y. Kim, M.H. Lee, S. Lee, J.H. Kim, D.R. Yang, Online estimation of fouling development for SWRO system using real data, Desalination, 247 (2009) 200–209.
  16. Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim, Artificial neural network model for optimizing operation of a seawater reverse osmosis desalination plant, Desalination, 247 (2009) 180–189.
  17. G.R. Shetty, S. Chellam, Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks, J. Membr. Sci., 217 (2003) 69–86.
  18. F. Schmitt, K.U. Do, Prediction of membrane fouling using artificial neural networks for wastewater treated by membrane bioreactor technologies: bottlenecks and possibilities, Environ. Sci. Pollut. Res. Int., 24 (2017) 22885–22913.
  19. O.B. Shukur, M.H. Lee, Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA, Renewable Energy, 76 (2015) 637–647.
  20. M. Karasalo, X. Hu, An optimization approach to adaptive Kalman filtering, Automatica, 47 (2011) 1785–1793.
  21. Q. Li, R. Li, K. Ji, W. Dai, Kalman Filter and Its Application, 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2015, pp. 74–77.
  22. Y. Park, K.H. Cho, J. Park, S.M. Cha, J.H. Kim, Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea, Sci. Total Environ., 502 (2015) 31–41.
  23. C.M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag, New York, 2006.
  24. P.-F. Pai, K.-P. Lin, C.-S. Lin, P.-T. Chang, Time series forecasting by a seasonal support vector regression model, Expert Syst. Appl., 37 (2010) 4261–4265.
  25. U. Thissen, R. van Brakel, A.P. de Weijer, W.J. Melssen, L.M.C. Buydens, Using support vector machines for time series prediction, Chemom. Intell. Lab. Syst., 69 (2003) 35–49.
  26. A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat. Comput., 14 (2004) 199–222.