References

  1. Y. Huang, S. Li, J. Chen, X. Zhang, Y. Chen, Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: adsorption capacity, kinetic and isotherm studies, Appl. Surf. Sci., 293 (2014) 160–168.
  2. E.N. Zare, A. Motahari, M. Sillanpaa, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/ dyes: a review, Environ. Res., 162 (2018) 173–195.
  3. C.-Y. Cao, C.-H. Liang, Y. Yin, L.-Y. Du, Thermal activation of serpentine for adsorption of cadmium, J. Hazard. Mater., 329 (2017) 222–229.
  4. WHO, Guidelines for Drinking-Water Quality, 4th ed., WHO, Switzerland, 2011.
  5. T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, R. Naidu, Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies, Chem. Eng. J., 270 (2015) 393–404.
  6. N.P. Raval, P.U. Shah, N.K. Shah, Adsorptive removal of nickel(II) ions from aqueous environment: a review, J. Environ. Manage., 179 (2016) 1–20.
  7. M.-D. Ma, H. Wua, Z.-Y. Deng, X. Zhao, Arsenic removal from water by nanometer iron oxide coated single-wall carbon nanotubes, J. Mol. Liq., 259 (2018) 369–375.
  8. T. Phuengprasop, J. Sittiwong, F. Unob, Removal of heavy metal ions by iron oxide coated sewage sludge, J. Hazard. Mater., 186 (2011) 502–507.
  9. M. Alkan, G. Tekin, H. Namli, FTIR and zeta potential measurements of sepiolite treated with some organosilanes, Microporous Mesoporous Mater., 84 (2005) 75–83.
  10. M. Mora, M.I. Lopez, M.A. Carmona, C. Jimenez-Sanchidrian, J.R. Ruiz, Study of the thermal decomposition of a sepiolite by mid- and near-infrared spectroscopies, Polyhedron, 29 (2010) 3046–3051.
  11. Y. Zhang, L. Wang, F. Wang, J. Liang, S. Ran, J. Sun, Phase transformation and morphology evolution of sepiolite fibers during thermal treatment, Appl. Clay Sci., 143 (2017) 205–211.
  12. E. Eren, H. Gumus, Characterization of the structural properties and Pb(II) adsorption behavior of iron oxide coated sepiolite, Desalination, 273 (2011) 276–284.
  13. E. Eren, H. Gumus, N. Ozbay, Equilibrium and thermodynamic studies of Cu(II) removal by iron oxide modified sepiolite, Desalination, 262 (2010) 43–49.
  14. S. Lazarevic, I. Jankovic-Castvan, V. Djokic, Z. Radovanovic, D. Janackovic, R. Petrovic, Iron-modified sepiolite for Ni2+ sorption from aqueous solution: an equilibrium, kinetic, and thermodynamic study, J. Chem. Eng. Data, 55 (2010) 5681–5689.
  15. Z. Orolinova, A. Mockovciakova, Structural study of bentonite/iron oxide composites, Mater. Chem. Phys., 114 (2009) 956–961.
  16. Z. Lu, Z. Hao, J. Wang, L. Chen, Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites, J. Ind. Eng. Chem., 34 (2016) 374–381.
  17. R.L. Frost, O.B. Locos, H. Ruan, J.T. Kloprogge, Near-infrared and mid-infrared spectroscopic study of sepiolites and paligorskites, Vib. Spectrosc., 27 (2001) 1–13.
  18. F. Franco, M. Pozo, J.A. Cecilia, M. Benítez-Guerrero, E. Pozo, J.A. Martín Rubí, Microwave assisted acid treatment of sepiolite: the role of composition and “crystallinity”, Appl. Clay Sci., 102 (2014) 15–27.
  19. L. Lescano, L. Castillo, S. Marfil, S. Barbosa, P. Maiza, Alternative methodologies for sepiolite defibering, Appl. Clay Sci., 95 (2014) 378–382.
  20. İ. Kıpçak, T.G. Isıyel, Magnesite tailing as low-cost adsorbent for the removal of copper (II) ions from aqueous solution, Korean J. Chem. Eng., 32 (2015) 1634–1641.
  21. E. Sabah, S. Ouki, Sepiolite and sepiolite-bound humic acid interactions in alkaline media and the mechanism of the formation of sepiolite-humic acid complexes, Int. J. Miner. Process., 162 (2017) 69–80.
  22. X. Wu, Q. Zhang, C. Liu, X. Zhang, D.D.L. Chung, Carboncoated sepiolite clay fibers with acid pre-treatment as low cost organic adsorbents, Carbon, 123 (2017) 259–272.
  23. Y. Qiu, S. Yu, Y. Song, Q. Wang, S. Zhong, W. Tian, Investigation of solution chemistry effects on sorption behavior of Sr(II) on sepiolite fibers, J. Mol. Liq., 180 (2013) 244–251.
  24. A.A. Ahribesh, S. Lazarevic, I. Jankovic-Castvan, B. Jokic, V. Spasojevic, T. Radetic, D. Janackovic, R. Petrovic, Influence of the synthesis parameters on the properties of the sepiolite-based magnetic adsorbents, Powder Technol., 305 (2017) 260–269.
  25. O. Duman, S. Tunç, T.G. Polat, Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent, Microporous Mesoporous Mater., 210 (2015) 176–184.
  26. Z. Xu, H. Jiang, Y. Yu, J. Xu, J. Liang, L. Zhou, F. Hu, Activation and β-FeOOH modification of sepiolite in one-step hydrothermal reaction and its simulated solar light catalytic reduction of Cr(VI), Appl. Clay Sci., 135 (2017) 547–553.
  27. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpaa, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind., 20 (2018) 54–74.
  28. A. Yebra-Rodriguez, J.D. Martin-Ramos, F. Del Rey, C. Viseras, A. Lopez-Galindo, Effect of acid treatment on the structure of sepiolite, Clay Miner., 38 (2003) 353–360.
  29. L.-Y. Gao, J.-H. Deng, G.-F. Huang, K. Li, K.-Z. Cai, Y. Liu, F. Huang, Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge, Bioresour. Technol., 272 (2019) 114–122.
  30. N. Balkaya, H. Cesur, Adsorption of cadmium from aqueous solution by phosphogypsum, Chem. Eng. J., 140 (2008) 247–254.
  31. Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang, C.G. Niu, J.H. Deng, M. Yan, Adsorption of Cd (II) and Zn (II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents, Chem. Eng. J., 162 (2010) 487–494.
  32. R.R. Pawar, Lalhmunsiama, M. Kim, J.-G. Kim, S.-M. Hong, S.Y. Sawant, S.M. Lee, Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads, Appl. Clay Sci., 162 (2018) 339–350.
  33. T. Schütz, S. Dolinska, P. Hudec, A. Mockovciakova, I. Znamenackova, Cadmium adsorption on manganese modified bentonite and bentonite–quartz sand blend, Int. J. Miner. Process., 150 (2016) 32–38.
  34. S.R. Mishra, R. Chandra, J. Kaila, S. Darshi, Kinetics and isotherm studies for the adsorption of metal ions onto two soil types, Environ. Technol. Innovation, 7 (2017) 87–101.
  35. S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  36. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  37. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanitary Eng. Div. ASCE, 89 (1963) 31–59.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  39. K.R. Hall, L.C. Eagleton, A. Acrivos, T. Vermeulen, Pore- and solid diffusion kinetics in fixed-bed adsorption under constantpattern conditions, Ind. Eng. Chem. Fundam., 5 (1966) 212–223.
  40. T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed bed adsorbers, J. Am. Inst. Chem. Eng., 20 (1974) 228–238.
  41. H. Freundlich, Colloid and Capillary Chemistry, Methuen, London, 1926.
  42. İ. Kıpçak, S. Erol, C. Gürakan, Removal of Cd(II) Ions from Aqueous Solution by Sepiolite (in Turkish), 11th National Chemical Engineering Congress, Book of Abstract, Eskişehir, Turkey, 2014, pp. 650–651.
  43. E. Gutierrez-Segura, M. Solache-Rios, A. Colin-Cruz, C. Fall, Adsorption of cadmium by Na and Fe modified zeolitic tuffs and carbonaceous material from pyrolyzed sewage sludge, J. Environ. Manage., 97 (2012) 6–13.
  44. H. Yaacoubi, O. Zidani, M. Mouflih, M. Gourai, S. Sebti, Removal of cadmium from water using natural phosphate as adsorbent, Procedia Eng., 83 (2014) 386–393.
  45. C. Jeon, Adsorption behavior of cadmium ions from aqueous solution using pen shells, J. Ind. Eng. Chem., 58 (2018) 57–63.
  46. W. Wang, H. Chen, A. Wang, Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite, Sep. Purif. Technol., 55 (2007) 157–164.
  47. P.U. Shah, N.P. Raval, N.K. Shah, Cadmium(II) removal from an aqueous solution using CSCMQ grafted copolymer, Desal. Wat. Treat., 57 (2016) 28262–28273.
  48. F. Sardella, M. Gimenez, C. Navas, C. Morandi, C. Deiana, K. Sapag, Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium, J. Environ. Chem. Eng., 3 (2015) 253–260.
  49. S. Tabesh, F. Davar, M.R. Loghman-Estarki, Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions, J. Alloys. Compd., 730 (2018) 441–449.
  50. J.-L. Hu, X.-W. He, C.-R. Wang, J.-W. Li, C.-H. Zhang, Cadmium adsorption characteristic of alkali modified sewage sludge, Bioresour. Technol., 121 (2012) 25–30.