References

  1. C. Zhao, J. Xue, F. Ran, S. Sun, Modification of polyethersulfone membranes – a review of methods, Prog. Mater. Sci., 58 (2013) 76–150.
  2. V. Bruggen, Chemical modification of polyethersulfone nanofiltration membranes: a review, J. Appl. Polym. Sci., 114 (2009) 42–630.
  3. D. Zhao, S. Yu, A review of recent advance in fouling mitigation of NF/RO membranes in water treatment: pretreatment, membrane modification, and chemical cleaning, Desal. Wat. Treat., 55 (2015) 870–891.
  4. S. Loeb, S. Sourirajan, Sea water Demineralization by Means of an Osmotic Membrane, in Advances in Chemistry, American Chemical Society, Washington, D.C., 1963.
  5. J.E. Cadotte, M.J. Steuck, R.J. Petersen, NTIS Report No. PB- 288387, loc. cit, 1978.
  6. C. Zimmerman, A. Singh, W. Koros, Tailoring mixed matrix composite membranes for gas separations, J. Membr. Sci., 137 (1997) 145–154.
  7. N. Srivastava, K.V. Joshi, A.K. Thakur, S.K. Menon, V.K. Shahi, BaCO3 nanoparticles embedded retentive and cation selective membrane for separation/recovery of Mg2+ from natural water sources, Desalination, 352 (2014) 142–149.
  8. A.L. Ahmad, A.A. Abdulkarim, S. Ismail, O. B. Seng, Optimization of PES/ZnO mixed matrix membrane preparation using response surface methodology for humic acid removal, Korean J. Chem. Eng., 33 (2016) 997–1007.
  9. L. Yu, Y. Zhang, Y. Wang, H. Zhang, J. Liu, High flux positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres, J. Hazard. Mater., 287 (2015) 373–383.
  10. Q. Zhao, J. Hou, J. Shen, J. Liu, Y. Zhang, Long-lasting antibacterial behavior of a novel mixed matrix water purification membrane, J. Mater. Chem. A, 3 (2015) 18696–18705.
  11. S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates, J. Membr. Sci., 453 (2014) 292–301.
  12. T.L.S. Silva, S. Morales-Torres, J.L. Figueiredo, A.M.T. Silva, Multi-walled carbon nanotube/PVDF blended membranes with sponge- and finger-like pores for direct contact membrane distillation, Desalination, 357 (2015) 233-245.
  13. S. Zhao, Z. Wang, J. Wang, S. Yang, S. Wang, PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP, J. Membr. Sci., 376 (2011) 83–95.
  14. J. Zhu, N. Guo, Y. Zhang, L. Yu, J. Liu, Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nano tubes grafted with poly(sodium4-styrenesulfonate) via surface-initiated ATRP, J. Membr. Sci., 465 (2014) 91–99.
  15. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2 nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  16. Y. Li, G. He, S. Wang, S. Yu, F. Pan, H. Wu, Z. Jiang, Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A, 1 (2013) 10058–10077.
  17. B. Corry, Designing carbon nanotube membranes for efficient water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
  18. F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Membranes of vertically aligned superlong carbon nanotubes, Langmuir, 27 (2011) 8437–8443.
  19. T. Altalhi, M.G. Markovic, N. Han, S. Clarke, D. Losic, Synthesis of carbon nanotube (CNT) composite membranes, Membranes, 1 (2011) 37–47.
  20. S. Ragunath, S. Mitra, Carbon nanotube immobilized composite hollow fiber membranes for extraction of volatile organics from air, J. Phys. Chem. C, 119 (2015) 13231–13237.
  21. S. Gahlot, V. Kulshrestha, Dramatic improvement in water retention and proton conductivity in electrically aligned functionalized CNT/SPEEK nanohybrid PEM, ACS Appl. Mater. Interfaces, 7 (2015) 264–272.
  22. H.J. Kim, K. Choi, Y. Baek, D.G. Kim, J. Shim, J. Yoon, J.C. Lee, High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interfaces, 6 (2014) 2819–2829.
  23. E. Celik, H. Park, H. Choi, H. Choi, Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res., 45 (2011) 274–282.
  24. E. Celik, L. Liu, H. Choi, Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration, Water Res., 45 (2011) 5287–5294.
  25. S. Zhao, Z. Wang, J. Wang, S. Wang, Poly(ether sulfone)/polyaniline nanocomposite membranes: effect of nanofiber size on membrane morphology and properties, Ind. Eng. Chem. Res., 53 (2014) 11468–11477.
  26. P. Shah, C.N. Murthy, Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437 (2013) 90–98.
  27. S. Gupta, D. Bhatiya, C.N. Murthy, Metal removal studies by composite membrane of polysulfone and functionalized singlewalled carbon nanotubes, Sep. Sci. Technol., 50 (2015) 421–429.
  28. S. Mangukiya, S. Prajapati, S. Kumar, V.K. Aswal, C.N. Murthy, Polysulfone-based composite membranes with functionalized carbon nanotubes show controlled porosity and electrical conductivity, J. Appl. Polym. Sci., 133 (2016) 43778.
  29. S. Kulkarnit, S. Krause, G.D. Wignall, B. Hammouda, Investigation of the pore structure and morphology of cellulose acetate membranes using small-angle neutron scattering. 1. Cellulose acetate active layer membranes, Macromolecules, 27 (1994) 6777–6784.
  30. S. Kar, R.C. Bindal, P.K. Tewari, Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7 (2012) 385–389.
  31. M. Majumder, N. Chopra, B.J. Hinds, Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes, J. Am. Chem. Soc., 127 (2005) 9062–9070.
  32. V.K. Aswal, P.S. Goyal, Small-angle neurton scattering diffractometer at dhruva reactor, Curr. Sci., 79 (2000) 947–953.
  33. J.S. Pedersen, Analysis of small-angle neutron scattering data from colloids and polymer solutions: modeling and leastsquare fitting, Adv. Colloid Interface Sci., 70 (1997) 171.
  34. P. Debye, A.M. Bueche, Scattering by an inhomogeneous solid, J. Appl. Phys., 20 (1949) 518–525.