References

  1. M. Mudler, Principles of Membrane Technology, Kluwer Academic, Dordrecht, 1996.
  2. A. Gabelman, S-T. Hwang, Hollow fiber membrane contactors, J. Membr. Sci., 159 (1999) 61–106.
  3. H. Park, B. Deshwal, L. Kim, H. Lee, Absorption of SO2 from flue gas using PVDF hollow fiber membranes in a gas–liquid contactor, J. Membr. Sci., 319 (2008) 29–37.
  4. E. Morales, Implementación de un sistema evaporador de membranas para el análisis colorimétrico de sulfitos en vino tinto.), Universidad de Santiago de Chile, Santiago, 2009.
  5. W. Silva, Modelación matemática de la extracción de SO2 desde vino mediante contactadores de membrana para su cuantificación analítica, doctoral degree. Universidad de Santiago de Chile, Santiago, 2010.
  6. W. Silva, J. Romero, E. Morales, L. Mendoza, R. Melo, M. Cotoras, Red-wine extract obtained by membrane based supercritical fluid extraction: preliminary characterization of chemical properties. Brazil. J. Chem. Eng., 34 (2017) 567–581.
  7. A. Hasanoğlu, J. Romero, A. Plaza W. Silva, Gas-filled membrane absorption: a review of three different applications to describe the mass transfer by means of a unified approach, Desal. Wat. Treat., 51 (2013) 5649–5663.
  8. Schultes, Absorption of sulphur dioxide with sodium hydroxide solution in packed columns. Chem. Eng. Technol., 21 (1998) 201–209.
  9. W. Sroysee, K. Ponlakhet, S. Chairam, P. Jarujamrus, M. Amatatongchai, A sensitive and selective on-line amperometric sulfite biosensor using sulfite oxidase immobilized on a magnetite-gold-folate nanocomposite modified carbon-paste electrode, Talanta, 156 (2016) 154–162.
  10. W. Sroysee, S. Chairam, D. Nacapricho, Simple flow injection for determination of sulfite by amperometric detection using glassy carbon electrode modified with carbon nanotubes-PDDA-gold nanoparticles. Talanta, 133, (2015) 134–141.
  11. G. Maduraiveeran, R. Ramaraj, Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring, J. Anal. Sci. Technol., 8 (2017) 1–10.
  12. N. de Paula, E. Barbosa, P. da Silva, G. de Souza, V. Nascimento, A. Lavorante, In-line electrochemical reagent generation coupled to a flow injection bioamperometric system for the determination of sulfite in beverage samples, Food Chemistry, 203 (2016) 183–18.
  13. C. Montes, J.H. Velez, G. Ramirez, M. Isaacs, R. Arce, M.J. Aguirre, Critical comparison between modified Monier-Williams and electrochemical methods to determine sulfite in aqueous solutions, Scient. World J., 2012 (2012) 168148.
  14. R. Sander, Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry (Max-Planck Institute of Chemistry, Air Chemistry Department Mainz, Germany, 1999).
  15. R. Arce, M.J. Aguirre, J. Romero, Electrooxidation of free sulfite by an integrated system of glassy carbon modified electrodes with nickel phthalocyanines and membrane absorber in red wine, Int. J. Electrochem. Sci., 9, (2014) 7916–7924.
  16. Z-L. Wu, Q. Liu, X-Q. Chen, J-G. Yu, Preconcentration and analysis of Rhodamine B in water and red wine samples by using magnesium hydroxide / carbon nanotube composites as a solid-phase extractant, J. Sep. Sci., 38 (2015) 3305–3486.
  17. S. Taylor, N. Higley, R. Bush, Sulfites in foods: uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity, Adv. Food Res., 30 (1986) 1–76.
  18. K. Prabhakar, E. Mallika, Preservatives | Permitted Preservatives – Sulfur Dioxide, 2014, pp. 108–112.