References

  1. H. Long, S.F. Miller, C. Strauss, C. Zhao, L. Cheng, Z. Ye, K. Griffin, R. Te, H. Lee, C.C. Chen, Antibiotic treatment enhances the genome-wide mutation rate of target cells, Proc. Natl. Acad. Sci. U. S. A., 113 (2016) E2498–E2505.
  2. E.B. El Amari, E. Chamot, R. Auckenthaler, J.C. Pechère, D.C. Van, Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates, Clin. Infect. Dis., 33 (2017) 1859–1864.
  3. W.J. Sim, J.W. Lee, E.S. Lee, S.K. Shin, S.R. Hwang, J.E. Oh, Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures, Chemosphere, 82 (2011) 179–186.
  4. M.S. Díaz-Cruz, D. Barceló, Recent advances in LC-MS residue analysis of veterinary medicines in the terrestrial environment, Trac-Trends. in. Anal. Chem., 26 (2007) 637–646.
  5. J.S. Brugge, W. Yonemoto, A. Lustig, A. Golden, Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption, Environ. Sci. Technol., 45 (2011) 5580–5586.
  6. R. Hao, X. Xiao, X. Zuo, J. Nan, W. Zhang, Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres, J. Hazard. Mater., 209–210 (2012) 137–145.
  7. Z. Zhang, K. Sun, B. Gao, G. Zhang, X. Liu, Y. Zhao, Adsorption of tetracycline on soil and sediment: effects of pH and the presence of Cu(II), J. Hazard. Mater., 190 (2011) 856–862.
  8. H. Wu, H. Xie, G. He, Y. Guan, Y. Zhang, Effects of the pH and anions on the adsorption of tetracycline on ironmontmorillonite, Appl. Clay Sci., 119 (2016) 161–169.
  9. E. Elmolla, M. Chaudhuri, Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution, J. Hazard. Mater., 170 (2009) 666–672.
  10. E.S. Elmolla, M. Chaudhuri, The feasibility of using combined Fenton-SBR for antibiotic wastewater treatment, Desalination, 285 (2012) 14–21.
  11. A. Dirany, I. Sirés, N. Oturan, A. Ozcan, M.A. Oturan, Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution, Environ. Sci. Technol., 46 (2012) 4074–4082.
  12. C.C. Jara, D. Fino, V. Specchia, G. Saracco, P. Spinelli, Electrochemical removal of antibiotics from wastewaters, Appl. Catal. B-Environ., 70 (2007) 479–487.
  13. S. Yahiat, F. Fourcade, S. Brosillon, A. Amrane, Removal of antibiotics by an integrated process coupling photocatalysis and biological treatment – Case of tetracycline and tylosin, Int. Biodeterior. Biodegrad., 65 (2011) 997–1003.
  14. Y. Zhao, B. Yin, G. Zhang, W. Shi, Facile fabrication of plate-like Bi3O4Cl for visible-light-driven photocatalytic degradation of tetracycline hydrochloride, Micro. Nano. Lett., 13 (2018) 9–11.
  15. R. Ocampo-Pérez, J. Rivera-Utrilla, C. Gómez-Pacheco, M. Sánchez-Polo, J.J. López-Peñalver, Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase, Chem. Eng. J., 213 (2012) 88–96.
  16. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloids Interface Sci., 368 (2012) 540–546.
  17. H.M. Otker, I. Akmehmetbalcioğlu, Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite, J. Hazard. Mater., 122 (2005) 251–258.
  18. J. Riverautrilla, G. Pradosjoya, M. Sánchezpolo, M.A. Ferrogarcía, I. Bautistatoledo, Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon, J. Hazard. Mater., 170 (2009) 298–305.
  19. S. Yang, T. Xiao, J. Zhang, Y. Chen, L. Li, Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution, Sep. Purif. Technol., 143 (2015) 19–26.
  20. O.B. Yang, J.C. Kim, J.S. Lee, Y.G. Kim, Use of activated carbon fiber for direct removal of iodine from acetic acid solution, Ind. Eng. Chem. Res., 32 (2015) 1692–1697.
  21. M.S. Shafeeyan, A. Houshmand, A. Arami‐Niya, H. Razaghizadeh, W.M.A.W. Daud, Modification of activated carbon using nitration followed by reduction for carbon dioxide capture, Bull. Korean Chem. Soc., 36 (2015) 533–538.
  22. A. Houshmand, D.W.M.A. Wan, S.M. Saleh, Tailoring the surface chemistry of activated carbon by nitric acid: study using response surface method, Bull. Chem. Soc. Jpn., 84 (2011) 1251–1260.
  23. T. Yoda, K. Shibuya, K. Miura, H. Myoubudani, Characterization of the adsorption ability of silk-derived activated carbon fibers using X-ray analysis and camera imaging methods, Measurement, 101 (2017) 103–110.
  24. W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption, Microporous Mesoporous Mater., 234 (2016) 146–154.
  25. R. R, J. T, R.K. G, S. Jacob, R. R, B.K. George, Adsorption performance of packed bed column for the removal of perchlorate using modified activated carbon, Process Saf. Environ., 117 (2018) 350–362.
  26. K.K. Beltrame, A.L. Cazetta, P.S. De, L. Spessato, T.L. Silva, V.C. Almeida, Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves, Ecotoxicol. Environ. Saf., 147 (2017) 64–71.
  27. G.B. Baur, I. Yuranov, L. Kiwi-Minsker, Activated carbon fibers modified by metal oxide as effective structured adsorbents for acetaldehyde, Catal. Today, 249 (2015) 252–258.
  28. P. He, L. Jia, G. Ma, R. Wang, J. Yuan, X. Duan, Z. Yang, D. Jia, Effects of fiber contents on the mechanical and microwave absorbent properties of carbon fiber felt reinforced geopolymer composites, Ceram. Int., 44 (2018) 10726–10734.
  29. J.M. Yuan, Z.F. Fan, Q.C. Yang, W. Li, Z.J. Wu, Surface modification of carbon fibers by microwave etching for epoxy resin composite, Compos. Sci. Technol., 164 (2018) 222–228.
  30. X. Wang, Y. Sheng, Influence of activated carbon fiber modification on Cu2+ adsorption, Environ. Sci. Manage., 37 (2012) 94–96.
  31. M.E. Parolo, M.C. Savini, J.M. Vallés, M.T. Baschini, M.J. Avena, Tetracycline adsorption on montmorillonite: pH and ionic strength effects, Appl. Clay Sci., 40 (2008) 179–186.
  32. A.Y. Abdolmaleki, H. Zilouei, S.N. Khorasani, K. Zargoosh, Adsorption of tetracycline from water using glutaraldehydecrosslinked electrospun nanofibers of chitosan/poly(vinyl alcohol), Water Sci. Technol., 77 (2018) 1324–1335.
  33. R.L. Tseng, F.C. Wu, R.S. Juang, Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics, J. Taiwan Inst. Chem. Eng., 41 (2010) 661–669.
  34. M.I. El-Khaiary, G.F. Malash, Y.S. Ho, On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems, Desalination, 257 (2010) 93–101.
  35. N. Ghasemi, P. Tamri, A. Khademi, N.S. Nezhad, S.R.W. Alwi, Linearized equations of pseudo second-order kinetic for the adsorption of Pb(II) on Pistacia Atlantica shells, Ieri. Procedia., 5 (2013) 232–237.
  36. F.C. Wu, T. Ruling, J. Rueyshin, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dyechitosan systems, Chem. Eng. J., 150 (2009) 366–373.
  37. M. Rasouli, N. Yaghobi, M. Hafezi, M. Rasouli, Adsorption of divalent lead ions from aqueous solution using low silica nanozeolite X, J. Ind. Eng. Chem., 18 (2012) 1970–1976.
  38. R.M. Ali, H.A. Hamad, M.M. Hussein, G.F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91 (2016) 317–332.
  39. S. Brunauer, P.H. Emmett, Chemisorptions of gases on iron synthetic ammonia catalysts, J. Am. Chem. Soc., 62 (1940) 1732–1746.
  40. A. Li, S. Pi, W. Wei, T. Chen, J. Yang, F. Ma, Adsorption behavior of tetracycline by extracellular polymeric substrates extracted from Klebsiella sp., Environ. Sci. Pollut. Res. Int., 23 (2016) 25084–25092.
  41. N. Rattanachueskul, A. Saning, S. Kaowphong, N. Chumha, L. Chuenchom, Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process, Bioresour. Technol., 226 (2017) 164–172.
  42. S. Vilvanathan, S. Shanthakumar, Removal of Ni(II) and Co(II) ions from aqueous solution using teak (Tectona grandis) leaves powder: adsorption kinetics, equilibrium and thermodynamics study, Desal. Wat. Treat., 57 (2016) 3995–4007.
  43. A. Chatterjee, S. Schiewer, Multi-resistance kinetic models for biosorption of Cd by raw and immobilized citrus peels in batch and packed-bed columns, Chem. Eng. J., 244 (2014) 105–116.
  44. W.F. Liu, Z. Jian, C.L. Zhang, Y. Wang, L. Ye, Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J., 162 (2010) 677–684.
  45. A.K. Alegakis, M.N. Tzatzarakis, A.M. Tsatsakis, I.G. Vlachonikolis, V. Liakou, In vitro study of oxytetracycline adsorption on activated charcoal, J. Environ. Sci. Health., Part B, 35 (2000) 559–569.
  46. M. Harja, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Sci. Total Environ., 628–629 (2018) 36–43.
  47. G. Feng, Yang, Adsorption and desorption of oxytetracycline in four constructed wetland substrates, Chinese. J. Environ. Eng., 7 (2013) 1683–1688.
  48. X. Song, D. Liu, G. Zhang, M. Frigon, X. Meng, K. Li, Adsorption mechanisms and the effect of oxytetracycline on activated sludge, Bioresour. Technol., 151 (2014) 428–431.