References
- United Nations Millennium Development Goals, (n.d.).
Available at http://www.un.org/millenniumgoals/ (Accessed 4
September 2018).
- M. Elimelech, W.A. Phillip, The future of seawater desalination:
energy, technology, and the environment, Science, 333 (2011)
712–717.
- J.E. Cadotte, R.S. King, R.J. Majerle, R.J. Petersen, Interfacial
synthesis in the preparation of reverse osmosis membranes, J.
Macromol. Sci. Part A Chem., 15 (1981) 727–755.
- E.W. Tow, M.M. Rencken, J.H. Lienhard, In situ visualization
of organic fouling and cleaning mechanisms in reverse osmosis
and forward osmosis, Desalination, 399 (2016) 138–147.
- M. Monruedee, S. Sarp, Y.G. Lee, J.H. Kim, Time-series image
analysis for investigating SWRO fouling mechanism, Desal.
Wat. Treat., 43 (2012) 212–220.
- M. Ding, A. Ghoufi, A. Szymczyk, Molecular simulations of
polyamide reverse osmosis membranes, Desalination, 343
(2014) 48–53.
- M. Ding, A. Szymczyk, F. Goujon, A. Soldera, A. Ghoufi,
Structure and dynamics of water confined in a polyamide
reverse-osmosis membrane: a molecular-simulation study, J.
Membr. Sci., 458 (2014) 236–244.
- M.E. Suk, A.V. Raghunathan, N.R. Aluru, Fast reverse osmosis
using boron nitride and carbon nanotubes, Appl. Phys. Lett., 92
(2008) 133120.
- M.E. Suk, N.R. Aluru, Water transport through ultrathin
graphene, J. Phys. Chem. Lett., 1 (2010) 1590–1594.
- Y.M. Kim, H. Ebro, J.H. Kim, Molecular dynamics simulation of
seawater reverse osmosis desalination using carbon nanotube
membranes, Desal. Wat. Treat., 57 (2016) 20169–20176.
- H. Ebro, Y.M. Kim, J.H. Kim, Molecular dynamics simulations
in membrane-based water treatment processes: a systematic
overview, J. Membr. Sci., 438 (2013) 112–125.
- B. Corry, Designing carbon nanotube membranes for efficient
water desalination, J. Phys. Chem. B, 112 (2008) 1427–1434.
- D. Cohen-Tanugi, J.C. Grossman, Water desalination across
nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
- M.J. Kotelyanskii, N.J. Wagner, M.E. Paulaitis, Atomistic
simulation of water and salt transport in the reverse osmosis
membrane FT-30, J. Membr. Sci., 139 (1998) 1–16.
- M.J. Kotelyanskii, N.J. Wagner, M.E. Paulaitis, Molecular
dynamics simulation study of the mechanisms of water
diffusion in a hydrated, amorphous polyamide, Comput. Theor.
Polym. Sci., 9 (1999) 301–306.
- E. Harder, D.E. Walters, Y.D. Bodnar, R.S. Faibish, B. Roux,
Molecular dynamics study of a polymeric reverse osmosis
membrane, J. Phys. Chem. B, 113 (2009) 10177–10182.
- Z.E. Hughes, J.D. Gale, A computational investigation of the
properties of a reverse osmosis membrane, J. Mater. Chem., 20
(2010) 7788.
- Y. Luo, E. Harder, R.S. Faibish, B. Roux, Computer simulations
of water flux and salt permeability of the reverse osmosis FT-30
aromatic polyamide membrane, J. Membr. Sci., 384 (2011) 1–9.
- Z.E. Hughes, J.D. Gale, Molecular dynamics simulations of
the interactions of potential foulant molecules and a reverse
osmosis membrane, J. Mater. Chem., 22 (2012) 175–184.
- C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Effect of membrane
chemistry and coating layer on physiochemical properties of
thin film composite polyamide RO and NF membranes: I. FTIR
and XPS characterization of polyamide and coating layer
chemistry, Desalination, 242 (2009) 149–167.
- C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano- and
micro-scales of reverse osmosis membranes—a comprehensive
characterization of physiochemical properties of uncoated and
coated membranes by XPS, TEM, ATR-FTIR, and streaming
potential measurements, J. Membr. Sci., 287 (2007) 146–156.
- O. Coronell, B.J. Mariñas, D.G. Cahill, Depth heterogeneity of
fully aromatic polyamide active layers in reverse osmosis and
nanofiltration membranes, Environ. Sci. Technol., 45 (2011)
4513–4520.
- B. Mi, O. Coronell, B.J. Marinas, F. Watanabe, D.G. Cahill, I.
Petrov, Physico-chemical characterization of NF/RO membrane
active layers by Rutherford backscattering spectrometry, J.
Membr. Sci., 282 (2006) 71–81.
- V.T. Do, C.Y. Tang, M. Reinhard, J.O. Leckie, Degradation of
polyamide nanofiltration and reverse osmosis membranes by
hypochlorite, Environ. Sci. Technol., 46 (2012) 852–859.
- M. Ding, A. Szymczyk, A. Ghoufi, Hydration of a polyamide
reverse-osmosis membrane, J. Membr. Sci., 501 (2016) 248–253.
- Y. Xiang, Y. Liu, B. Mi, Y. Leng, Hydrated polyamide membrane
and its interaction with alginate: a molecular dynamics study,
Langmuir, 29 (2013) 11600–11608.
- Y. Xiang, Y. Liu, B. Mi, Y. Leng, Molecular dynamics simulations
of polyamide membrane, calcium alginate gel, and their
interactions in aqueous solution, Langmuir, 30 (2014) 9098–9106.
- gnu.org, (n.d.). Available at: https://www.gnu.org/licenses/gpl-3.0.en.html (Accessed 6 September 2018).
- A.D. Bochevarov, E. Harder, T.F. Hughes, J.R. Greenwood,
D.A. Braden, D.M. Philipp, D. Rinaldo, M.D. Halls, J. Zhang,
R.A. Friesner, Jaguar: a high-performance quantum chemistry
software program with strengths in life and materials sciences,
Int. J. Quant. Chem., 113 (2013) 2110–2142.
- H.B. Schlegel, Geometry optimization, Wiley Interdiscip.
Rev.: Comp. Mol. Sci., 1 (2011) 790–809.
- R. Salomon-Ferrer, D.A. Case, R.C. Walker, An overview of the
Amber biomolecular simulation package, Wiley Interdiscip.
Rev.: Comp. Mol. Sci., 3 (2013) 198–210.
- D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M.
Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The
Amber biomolecular simulation programs, J. Comp. Chem., 26
(2005) 1668–1688.
- W.J. Mortier, K. Van Genechten, J. Gasteiger, Electronegativity
equalization: application and parametrization, J. Am. Chem.
Soc., 107 (1985) 829–835.
- J. Gasteiger, M. Marsili, Iterative partial equalization of
orbital electronegativity—a rapid access to atomic charges,
Tetrahedron, 36 (1980) 3219–3228.
- A.I. Jewett, Z. Zhuang, J.-E. Shea, Moltemplate a coarsegrained
model assembly tool, Biophys. J., 104 (2013) 169A. doi:
doi:10.1016/j.bpj.2012.11.953.
- W. Gao, F. She, J. Zhang, L.F. Dumée, L. He, P.D. Hodgson,
L. Kong, Understanding water and ion transport behaviour
and permeability through poly(amide) thin film composite
membrane, J. Membr. Sci., 487 (2015) 32–39.
- S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys., 117 (1995) 1–19. doi: doi:10.1006/
jcph.1995.1039.
- M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids,
Clarendon Press, Oxford, 2009.
- A.Y. Toukmaji, J.A. Board, Ewald summation techniques in
perspective: a survey, Comput. Phys. Commun., 95 (1996)
73–92.
- J.W. Eastwood, R.W. Hockney, D.N. Lawrence, P3M3DP—the
three-dimensional periodic particle-particle/particle-mesh
program, Comput. Phys. Commun., 19 (1980) 215–261.
- J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case,
Development and testing of a general amber force field, J.
Comput. Chem., 25 (2004) 1157–1174.
- T. Schneider, E.P. Stoll, Molecular-dynamics study of a threedimensional
one-component model for distortive phasetransitions,
Phys. Rev. B, 17 (1978) 1302–1322.
- I.J. Roh, A.R. Greenberg, V.P. Khare, Synthesis and
characterization of interfacially polymerized polyamide thin
films, Desalination, 191 (2006) 279–290.
- M. Ding, A. Szymczyk, A. Ghoufi, On the structure and rejection
of ions by a polyamide membrane in pressure-driven molecular
dynamics simulations, Desalination, 368 (2015) 76–80.
- G.-Y. Chai, W.B. Krantz, Formation and characterization of
polyamide membranes via interfacial polymerization, J. Membr.
Sci., 93 (1994) 175–192.
- R.W. Baker, Membrane Technology and Applications, 3rd ed,
John Wiley & Sons, Chichester, West Sussex, Hoboken, 2012.
- S.H. Kim, S.Y. Kwak, T. Suzuki, Positron annihilation
spectroscopic evidence to demonstrate the flux-enhancement
mechanism in morphology-controlled thin-film-composite
(TFC) membrane, Environ. Sci. Technol., 39 (2005) 1764–1770.
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual
molecular dynamics, J. Mol. Graph., 14 (1996) 33–38.
- LAMMPS documentation. Available at: https://lammps.sandia.gov/doc/Manual.html.