References

  1. M. Dawoud, M. Mulla, Environmental impacts of seawater desalination: Arabian Gulf case study, Int. J. Environ. Sustain., 1 (2012) 22–37.
  2. SyndiGate.info, International Water Summit 2017, GCC Countries Are Global Leaders in Desalination. Available at: http://www.albawaba.com/business/internaional-water-summit-2017-gcccountries-are-global-leaders-desalinaion-926452.
  3. E. James, International Water Summit 2015: GCC Forecast to Raise Desalination Capacity by 40% by 2020. Available at http://www.arabianbusiness.com/gcc-forecast-raise-desalinationcapacity-by-40-by-2020-610159.html.
  4. T. Mezher, H. Fath, Z. Abbas, A. Khaled, Techno-economic assessment and environmental impacts of desalination technologies, Desalination, 266 (2011) 263–273.
  5. G. Gude, Emerging Technologies for Sustainable Desalination Handbook, Butterworth-Heinemann, 2018.
  6. F.S. Pinto, R. Cunha Marques, Desalination projects economic feasibility: a standardization of cost determinants, Renew. Sustain. Energy Rev., 78 (2017) 904–915.
  7. G. Isiklar, G. Buyukozkan, Using a multi-criteria decisionmaking approach to evaluate mobile phone alternatives, Comp. Stand. Interfaces, 29 (2006) 265–274.
  8. A. Yalcin, S. Reis, A.C. Aydinoglu, T. Yomralioglu, A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey, CATENA, 85 (2011) 274–287.
  9. P. Aragonés-Beltrán, F. Chaparro-González, J. Pastor-Ferrando, A. Pla-Rubio, An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects, Energy, 66 (2014) 222–238.
  10. G. Tuzkaya, B. Gülsün, Evaluating centralized return centers in a reverse logistics network: an integrated fuzzy multicriteria decision approach, Int. J. Environ. Sci. Technol., 5 (2008) 339–352.
  11. D. Georgiou, E.Sh. Mohammed, S. Rozakis, Multi-criteria decision making on the energy supply configuration of autonomous desalination units, Renew. Energy, 75 (2015) 459–467.
  12. T.L. Saaty, A scaling method for priorities in hierarchical structures, J. Math. Psychol., 15.3 (1977) 234–281.
  13. S. Ahmad, R.M. Tahar, Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: a case of Malaysia, Renew. Energy, 63 (2014) 458–466.
  14. B. Limmeechokchai, S. Chawana, Sustainable energy development strategies in the rural Thailand: the case of the improved cooking stove and the small biogas digester, Renew. Sustain. Energy Rev., 11 (2007) 818–837.
  15. F. Ahammed, A. Azeem, Selection of the most appropriate package of solar home system using analytic hierarchy process model in rural areas of Bangladesh, Renew. Energy, 55 (2013) 6–11.
  16. M. Hajeeh, A. Al-Othman, Application of the analytical hierarchy process in the selection of desalination plants, Desalination, 174 (2005) 97–108.
  17. M.A. Basaran, E.F. Dilek, M.T. Atay, Comments to paper entitled “application of the analytical hierarchy process in the selection of desalination plants in 174 (2005) 97-108”, Desalination, 261 (2010) 1–2.
  18. ESCWA, Role of Desalination in Addressing Water Scarcity, E/ESCWA/SDPD/2009/4, United Nations Publication Sales No. E.09.II.L.7, (2009).
  19. A.H.M. Saadat, M.S. Islam, F. Parvin, A. Sultana, Desalination technologies for developing countries: a review, J. Sci. Res., 10 (2018) 77–97.
  20. N. Voutchkov, Desalination Engineering: Planning and Design, The McGraw-Hill Companies, 2013.
  21. O.K. Buros, The ABCs of Desalting, International Desalination Association, Topsfield, Massachusetts, USA, 2000.
  22. T.L. Saaty, The Analytic Hierarchy Process, McGraw Hill, New York, 1988.
  23. T.L. Saaty, Highlights and critical points in the theory and application of the Analytic Hierarchy Process, Eur. J. Oper. Res., 74 (1994) 426–447.
  24. R.W. Saaty, The analytic hierarchy process—what it is and how it is used, Math. Model., 9 (1987) 161–176.
  25. T.L. Saaty, The Analytical Hierarchy Process, McGraw Hill, New York, 1980.
  26. N. Voutchkov, Desalination Engineering: Planning and Design, McGraw Hill Professional, New York, 2012.
  27. F.T.S. Chan, N. Kumar, Global supplier development considering risk factors using fuzzy extended AHP-based approach, Omega, 35 (2007) 417–431.
  28. M. Dağdeviren, İ. Yüksel, Developing a fuzzy analytic hierarchy process (AHP) model for behavior-based safety management, Inform. Sci., 178 (2008) 1717–1733.
  29. O. Kulak, C. Kahraman, Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process, Inform. Sci., 170 (2005) 191–210.
  30. M. Dağdeviren, S. Yavuz, N. Kılınc, Weapon selection using the AHP and TOPSIS methods under fuzzy environment, Expert Syst. Appl., 36 (2009) 8143–8151.
  31. M.P. Amiri, Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods, Expert Syst. Appl., 37 (2010) 6218–6224.
  32. O. Kilincci, S.A. Onal, Fuzzy AHP approach for supplier selection in a washing machine company, Expert Syst. Appl., 38 (2011) 9656–9664.
  33. M.S. Mohsen, O.R. Al-Jayyousi, Brackish water desalination: an alternative for water supply enhancement in Jordan, Desalination, 124 (1999) 163–174.
  34. M. Berrittella, A. Certa, M. Enea, P. Zito, An analytic hierarchy process for the evaluation of transport policies to reduce climate change impacts, 2007. Available at: https://iris.unipa.it/bitstream/10447/18356/1/10447-18356.pdf (Accessed 15 October 2018).
  35. E. Mu, M. Pereyra-Rojas, Understanding the analytic Hierarchy process, in Practical Decision Making, Springer, Cham, 2017, pp. 7–22.
  36. H.M. Ettouney, H.T. El-Dessouky, P.J. Gowin, R.S. Faibish, Evaluating the economics of desalination, Chem. Eng. Prog., 98 (2002) 32–39.
  37. Y. Zhou, R.S.J. Tol, Evaluating the costs of desalination and water transport, Water Resour. Res., 41.3 (2005).