References
- J. Jung, H. Park, M. Han, T. Kim, Importance of bubble bed
characteristics in dissolved air flotation, KSCE J. Civ. Eng., 2013
(2017) 1–5.
- Y. Hwang, M. Maeng, S. Dockko, Development of a hybrid
system for advanced wastewater treatment using high-rate
settling and a flotation system with ballasted media, Int.
Biodeterior. Biodegrad., 113 (2016) 256–261.
- J. Haarhoff, Dissolved air flotation: progress and prospects for
drinking water treatment, J. Water. Supply Res. Technol., 57
(2008) 555–567.
- H.K. Shon, S. Vigneswaran, S.A. Snyder, Effluent organic matter
(EfOM) in wastewater: constituents, effects, and treatment, Crit.
Rev. Environ. Sci. Technol., 36 (2006) 327–374.
- B.H. Lee, W.C. Song, B. Manna, J.K. Ha, Dissolved ozone
flotation (DOF) - a promising technology in municipal
wastewater treatment, Desal. Wat. Treat., 225 (2008) 260–273.
- P.R. Wilinski, J. Naumczyk, Dissolved Ozone Flotation
as a Innovative and Prospect Method for Treatment of
Micropollutants and Wastewater Treatment Costs Reduction,
12th ed., World Wide Workshop for Young Environmental
Scientists, Arcueil, France, 2012, pp. 1–7.
- G.A. Oliveira, E. Carissimi, I. Monje-Ramirez, S.B. Velasquez-Orta, R.T. Rodrigues, M.T.O. Ledesma, Comparison between
coagulation-flocculation and ozone-flotation for Scenedesmus
microalgal biomolecule recovery and nutrient removal from
wastewater in a High-Rate Algal Pond, Bioresour. Technol., 259
(2018) 334–342.
- J.L. Graham, R. Striebich, C.L. Patterson, K.E. Radha, R.C. Haught,
MTBE oxidation byproducts from the treatment of surface
waters by ozonation and UV-ozonation, Chemosphere, 54
(2004) 1011–1016.
- D.E. John, C.N. Hass, N. Nwachuku, C.P. Gerba, Chlorine and
ozone disinfection of Encephalitozoon intestinalis spores, Water
Res., 39 (2002) 2369–2375.
- L. Hu, Z. Xia, Application of ozone micro-nano-bubbles to
groundwater remediation, J. Hazard. Mater., 342 (2018) 446–453.
- H. Selcuk, Decolorization and detoxification of textile
wastewater by ozonation and coagulation processes, Dyes
Pigm., 64 (2005) 217–222.
- H.Y. Shu, M.C. Chang, Decolorization effects of six azo dyes by
O3, UV/O3 and UV/H2O2 processes, Dyes Pigm., 65 (2005) 25–31.
- P. Bose, D.P. Saroj, A. Kumar, Enhancement in mineralization
of some natural refractory organic compounds by ozonationaerobic
biodegradation, J. Chem. Technol. Biotechnol., 81 (2005)
115–127.
- P.K. Jin, X.C. Wang, G. Hu, A dispersed-ozone flotation (DOF)
separator for tertiary wastewater treatment, Water Sci. Technol.,
53 (2009) 151–157.
- X. Jin, P. Jin, R. Hou, L. Yang, X.C. Wang, Enhanced WWTP
effluent organic matter removal in hybrid ozonationcoagulation
(HOC) process catalyzed by Al-based coagulant,
J. Hazard. Mater., 327 (2017) 216–224.
- S. Zhang, S. Gitungo, L. Axe, J.E. Dyksen, R.F. Raczko,
A pilot plant study using conventional and advanced water
treatment processes: evaluating removal efficiency of indicator
compounds representative of pharmaceuticals and personal
care products, Water Res., 105 (2016) 85–96.
- B.H. Lee, W.C. Song, H.Y. Kim, J.H. Kim, Enhanced separation of
water quality parameters in the DAF (Dissolved Air Flotation)
system using ozone, Water Sci. Technol., 56 (2007) 149–155.
- D. Ma, B. Gao, C. Xia, Y. Wang, Q. Yue, Q. Li, Effects of sludge
retention times on reactivity of effluent dissolved organic matter
for trihalomethane formation in hybrid powdered activated
carbon membrane bioreactors, Bioresour. Technol., 166 (2014)
381–388.
- American Public Health Association, Standard Methods for the
Examination of Water and Wastewater, 20th ed., Washington,
DC, 1998.
- C.C.D. Yao, W.R. Haag, Rate constants for direct reactions of
ozone with several drinking water contaminants, Water Res., 25
(1991) 761–773.
- M.S. Elovitz, U. von Gunten, Hydroxyl radical/ozone eatios
during ozonation processes. I. The RCT concept, Ozone Sci.
Eng., 21 (1999) 239–260.
- A. Azevedo, R. Etchepare, J. Rubio, Raw water clarification by
flotation with microbubbles and nanobubbles generated with a
multiphase pump, Water Sci. Technol., 75 (2017) 2342–2349.
- H.J.B. Couto, M.V. Melo, G. Massarani, Treatment of milk
industry effluent by dissolved air flotation, Braz. J. Chem. Eng.,
21 (2004) 83–91.
- S.J. Kim, J. Choi, Y.T. Jeon, I.C. Lee, C.H. Won, J. Chung,
Microbubble-inducing characteristics depending on various
nozzle and pressure in dissolved air flotation, Ksec J. Civ. Eng.,
19 (2015) 558–563.
- S.E. de Rijk, Jaap H.J.M. aivan der Graaf, Jan G. den Blanken,
Bubble size in flotation thickening, Water Res., 28 (1994)
465–473.
- D. Reay, G.A. Ratcliff, Removal of fine particles from water by
dispersed air flotation: Effects of bubble size and particle size on
collection efficiency, Can. J. Chem. Eng., 51 (1973) 178–185.
- A.I. Zouboulis, A. Avranas, Treatment of oil-in-water emulsions
by coagulation and dissolved-air flotation, Colloids Surf. A
Physicochem. Eng. Asp., 172 (2000) 153–161.
- S. Calgaroto, A. Azevedo, J. Rubio, Separation of amineinsoluble
species by flotation with nano and microbubbles,
Min. Eng., 89 (2016) 24–29.
- J.K. Edzwald, Dissolved air flotation and me, Water Res., 44
(2010) 2077–2106.
- D.M. Leppinen, S.B. Dalziel, Bubble size distribution in
dissolved air flotation tanks, J. Water Supply Res. Technol., 53
(2004) 531–543.
- R.T. Rodrigues, J. Rubio, New basis for measuring the size
distribution of bubbles, Min. Eng., 16 (2003) 757–765.
- C.O. Rodrigues, Mecanismos De Floculação Com Polímeros
Hidrossolúveis, Geração De Flocos Aerados, Floculação Em
Núcleos De Bolhas Floculantes E Aplicações Na Separação De
Partículas Modelos Por Flotação, PhD Thesis, 2010, p. 242.
- C. Oliveira, R.T. Rodrigues, J. Rubio, A new technique for
characterizing aerated flocs in a flocculation- microbubble
flotation system, Int. J. Miner. Process., 96 (2010) 36–44.
- J.K. Edzwald, Principles and applications of dissolved air
flotation, Water Sci. Technol., 31 (1995) 1–23.
- Y. Hu, G. Qiu, J.D. Miller, Hydrodynamic interactions between
particles in aggregation and flotation, Int. J. Miner. Process., 70
(2003) 157–170.
- J. Haarhoff, J.K. Edzwald, Modelling of floc-bubble aggregate
rise rates in dissolved air flotation, Water Sci. Technol., 43 (2001)
175–184.
- R.T. Rodrigues, J. Rubio, Operating parameters affecting the
formation of Kaolin aerated flocs in water and wastewater
treatment, Clean-Soil Air Water, 42 (2014) 909–916.
- M.C. Bongiovani, F.C. Bonggiovani, P.F. Coldebella, K.C. Valverde,
L. Nishi, R. Bergamasco, Removal of natural organic matter
and trihalomethane minimization by coagulation/flocculation/
filtration using a natural tannin, Desal. Wat. Treat., 57 (2016)
5406–5415.
- T. Xu, C. Cui, C. Ma, Color composition in a water reservoir and
DBPs formation following coagulation and chlorination during
its conventional water treatment in northeast of China, Desal.
Wat. Treat., 54 (2015) 1375–1384.
- J.A. Leenheer, Systematic Approaches to Comprehensive
Analyses of Natural Organic Matter, Ann. Environ. Sci., 3 (2009)
1–131.
- A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of
catalytic ozonation on alumina and zeolites in water: formation
of hydroxyl radicals, Appl. Catal. B Environ., 123–124 (2012)
94–106.
- F. Qi, Z. Chen, B. Xu, J. Shen, J. Ma, C. Joll, A. Heitz, Influence
of surface texture and acid-base properties on ozone
decomposition catalyzed by aluminum (hydroxyl) oxides,
Appl. Catal. B Environ., 84 (2008) 684–690.
- L. Zhao, Z. Sun, J. Ma, Novel relationship between hydroxyl
radical initiation and surface group of ceramic honeycomb
supported metals for the catalytic ozonation of nitrobenzene in
aqueous solution, Environ. Sci. Technol., 43 (2009) 4157–4163.