References

  1. J. Jung, H. Park, M. Han, T. Kim, Importance of bubble bed characteristics in dissolved air flotation, KSCE J. Civ. Eng., 2013 (2017) 1–5.
  2. Y. Hwang, M. Maeng, S. Dockko, Development of a hybrid system for advanced wastewater treatment using high-rate settling and a flotation system with ballasted media, Int. Biodeterior. Biodegrad., 113 (2016) 256–261.
  3. J. Haarhoff, Dissolved air flotation: progress and prospects for drinking water treatment, J. Water. Supply Res. Technol., 57 (2008) 555–567.
  4. H.K. Shon, S. Vigneswaran, S.A. Snyder, Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment, Crit. Rev. Environ. Sci. Technol., 36 (2006) 327–374.
  5. B.H. Lee, W.C. Song, B. Manna, J.K. Ha, Dissolved ozone flotation (DOF) - a promising technology in municipal wastewater treatment, Desal. Wat. Treat., 225 (2008) 260–273.
  6. P.R. Wilinski, J. Naumczyk, Dissolved Ozone Flotation as a Innovative and Prospect Method for Treatment of Micropollutants and Wastewater Treatment Costs Reduction, 12th ed., World Wide Workshop for Young Environmental Scientists, Arcueil, France, 2012, pp. 1–7.
  7. G.A. Oliveira, E. Carissimi, I. Monje-Ramirez, S.B. Velasquez-Orta, R.T. Rodrigues, M.T.O. Ledesma, Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a High-Rate Algal Pond, Bioresour. Technol., 259 (2018) 334–342.
  8. J.L. Graham, R. Striebich, C.L. Patterson, K.E. Radha, R.C. Haught, MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation, Chemosphere, 54 (2004) 1011–1016.
  9. D.E. John, C.N. Hass, N. Nwachuku, C.P. Gerba, Chlorine and ozone disinfection of Encephalitozoon intestinalis spores, Water Res., 39 (2002) 2369–2375.
  10. L. Hu, Z. Xia, Application of ozone micro-nano-bubbles to groundwater remediation, J. Hazard. Mater., 342 (2018) 446–453.
  11. H. Selcuk, Decolorization and detoxification of textile wastewater by ozonation and coagulation processes, Dyes Pigm., 64 (2005) 217–222.
  12. H.Y. Shu, M.C. Chang, Decolorization effects of six azo dyes by O3, UV/O3 and UV/H2O2 processes, Dyes Pigm., 65 (2005) 25–31.
  13. P. Bose, D.P. Saroj, A. Kumar, Enhancement in mineralization of some natural refractory organic compounds by ozonationaerobic biodegradation, J. Chem. Technol. Biotechnol., 81 (2005) 115–127.
  14. P.K. Jin, X.C. Wang, G. Hu, A dispersed-ozone flotation (DOF) separator for tertiary wastewater treatment, Water Sci. Technol., 53 (2009) 151–157.
  15. X. Jin, P. Jin, R. Hou, L. Yang, X.C. Wang, Enhanced WWTP effluent organic matter removal in hybrid ozonationcoagulation (HOC) process catalyzed by Al-based coagulant, J. Hazard. Mater., 327 (2017) 216–224.
  16. S. Zhang, S. Gitungo, L. Axe, J.E. Dyksen, R.F. Raczko, A pilot plant study using conventional and advanced water treatment processes: evaluating removal efficiency of indicator compounds representative of pharmaceuticals and personal care products, Water Res., 105 (2016) 85–96.
  17. B.H. Lee, W.C. Song, H.Y. Kim, J.H. Kim, Enhanced separation of water quality parameters in the DAF (Dissolved Air Flotation) system using ozone, Water Sci. Technol., 56 (2007) 149–155.
  18. D. Ma, B. Gao, C. Xia, Y. Wang, Q. Yue, Q. Li, Effects of sludge retention times on reactivity of effluent dissolved organic matter for trihalomethane formation in hybrid powdered activated carbon membrane bioreactors, Bioresour. Technol., 166 (2014) 381–388.
  19. American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 20th ed., Washington, DC, 1998.
  20. C.C.D. Yao, W.R. Haag, Rate constants for direct reactions of ozone with several drinking water contaminants, Water Res., 25 (1991) 761–773.
  21. M.S. Elovitz, U. von Gunten, Hydroxyl radical/ozone eatios during ozonation processes. I. The RCT concept, Ozone Sci. Eng., 21 (1999) 239–260.
  22. A. Azevedo, R. Etchepare, J. Rubio, Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump, Water Sci. Technol., 75 (2017) 2342–2349.
  23. H.J.B. Couto, M.V. Melo, G. Massarani, Treatment of milk industry effluent by dissolved air flotation, Braz. J. Chem. Eng., 21 (2004) 83–91.
  24. S.J. Kim, J. Choi, Y.T. Jeon, I.C. Lee, C.H. Won, J. Chung, Microbubble-inducing characteristics depending on various nozzle and pressure in dissolved air flotation, Ksec J. Civ. Eng., 19 (2015) 558–563.
  25. S.E. de Rijk, Jaap H.J.M. aivan der Graaf, Jan G. den Blanken, Bubble size in flotation thickening, Water Res., 28 (1994) 465–473.
  26. D. Reay, G.A. Ratcliff, Removal of fine particles from water by dispersed air flotation: Effects of bubble size and particle size on collection efficiency, Can. J. Chem. Eng., 51 (1973) 178–185.
  27. A.I. Zouboulis, A. Avranas, Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation, Colloids Surf. A Physicochem. Eng. Asp., 172 (2000) 153–161.
  28. S. Calgaroto, A. Azevedo, J. Rubio, Separation of amineinsoluble species by flotation with nano and microbubbles, Min. Eng., 89 (2016) 24–29.
  29. J.K. Edzwald, Dissolved air flotation and me, Water Res., 44 (2010) 2077–2106.
  30. D.M. Leppinen, S.B. Dalziel, Bubble size distribution in dissolved air flotation tanks, J. Water Supply Res. Technol., 53 (2004) 531–543.
  31. R.T. Rodrigues, J. Rubio, New basis for measuring the size distribution of bubbles, Min. Eng., 16 (2003) 757–765.
  32. C.O. Rodrigues, Mecanismos De Floculação Com Polímeros Hidrossolúveis, Geração De Flocos Aerados, Floculação Em Núcleos De Bolhas Floculantes E Aplicações Na Separação De Partículas Modelos Por Flotação, PhD Thesis, 2010, p. 242.
  33. C. Oliveira, R.T. Rodrigues, J. Rubio, A new technique for characterizing aerated flocs in a flocculation- microbubble flotation system, Int. J. Miner. Process., 96 (2010) 36–44.
  34. J.K. Edzwald, Principles and applications of dissolved air flotation, Water Sci. Technol., 31 (1995) 1–23.
  35. Y. Hu, G. Qiu, J.D. Miller, Hydrodynamic interactions between particles in aggregation and flotation, Int. J. Miner. Process., 70 (2003) 157–170.
  36. J. Haarhoff, J.K. Edzwald, Modelling of floc-bubble aggregate rise rates in dissolved air flotation, Water Sci. Technol., 43 (2001) 175–184.
  37. R.T. Rodrigues, J. Rubio, Operating parameters affecting the formation of Kaolin aerated flocs in water and wastewater treatment, Clean-Soil Air Water, 42 (2014) 909–916.
  38. M.C. Bongiovani, F.C. Bonggiovani, P.F. Coldebella, K.C. Valverde, L. Nishi, R. Bergamasco, Removal of natural organic matter and trihalomethane minimization by coagulation/flocculation/ filtration using a natural tannin, Desal. Wat. Treat., 57 (2016) 5406–5415.
  39. T. Xu, C. Cui, C. Ma, Color composition in a water reservoir and DBPs formation following coagulation and chlorination during its conventional water treatment in northeast of China, Desal. Wat. Treat., 54 (2015) 1375–1384.
  40. J.A. Leenheer, Systematic Approaches to Comprehensive Analyses of Natural Organic Matter, Ann. Environ. Sci., 3 (2009) 1–131.
  41. A. Ikhlaq, D.R. Brown, B. Kasprzyk-Hordern, Mechanisms of catalytic ozonation on alumina and zeolites in water: formation of hydroxyl radicals, Appl. Catal. B Environ., 123–124 (2012) 94–106.
  42. F. Qi, Z. Chen, B. Xu, J. Shen, J. Ma, C. Joll, A. Heitz, Influence of surface texture and acid-base properties on ozone decomposition catalyzed by aluminum (hydroxyl) oxides, Appl. Catal. B Environ., 84 (2008) 684–690.
  43. L. Zhao, Z. Sun, J. Ma, Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution, Environ. Sci. Technol., 43 (2009) 4157–4163.